Data classification using logarithmic spiral method based on RBF classifiers

Mohamed Wajih Guerfala, Amel Sifaoui, A. Abdelkrim
{"title":"Data classification using logarithmic spiral method based on RBF classifiers","authors":"Mohamed Wajih Guerfala, Amel Sifaoui, A. Abdelkrim","doi":"10.1109/DT.2017.8012140","DOIUrl":null,"url":null,"abstract":"Clustering is the organization of a set of data in homogeneous classes. It aims to classify the representation of the initial data. The automatic classification recovers all the methods allowing the automatic construction of such groups. This paper describes how to classify data using a new design of neural classifiers with radial basis function (RBF) based on a new algorithm for characterizing the hidden layer structure. This algorithm, called k-means Euclidean distance, groups the training data class by class in order to calculate the optimal number of clusters of the hidden layer, using the Mean Squared Error. To initialize the initial clusters of k-means algorithm, we have used the method of logarithmic spiral golden angle. Two examples of data sets are considered to improve the efficiency of the proposed approach and the obtained results are compared with basic literature classifier.","PeriodicalId":426951,"journal":{"name":"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DT.2017.8012140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Clustering is the organization of a set of data in homogeneous classes. It aims to classify the representation of the initial data. The automatic classification recovers all the methods allowing the automatic construction of such groups. This paper describes how to classify data using a new design of neural classifiers with radial basis function (RBF) based on a new algorithm for characterizing the hidden layer structure. This algorithm, called k-means Euclidean distance, groups the training data class by class in order to calculate the optimal number of clusters of the hidden layer, using the Mean Squared Error. To initialize the initial clusters of k-means algorithm, we have used the method of logarithmic spiral golden angle. Two examples of data sets are considered to improve the efficiency of the proposed approach and the obtained results are compared with basic literature classifier.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于RBF分类器的对数螺旋法数据分类
聚类是将一组数据组织在同类类中。它的目的是对初始数据的表示进行分类。自动分类恢复了所有允许自动构建此类组的方法。本文基于一种新的隐层结构表征算法,提出了一种基于径向基函数的神经分类器。该算法被称为k-means欧氏距离,它将训练数据逐类分组,利用均方误差(Mean Squared Error)计算隐藏层的最优簇数。为了初始化k-means算法的初始聚类,我们使用了对数螺旋黄金角的方法。为了提高该方法的效率,考虑了两个数据集实例,并将所得结果与基本文献分类器进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of SIW iris-coupled-cavity band-pass filter circuit using Wave Concept Iterative Process method Heuristic analysis and contingencies classification of case study IEEE 14-bus Corpus management system: Semantic aspects of representation and processing of search queries SEMG based model to simulate action potential of a single muscle fiber Medical Body Area Networks: Mobility and channel modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1