Boosting False Data Injection Attack Detection with Structural Knowledge

Qiushi Huang, Chenye Wu
{"title":"Boosting False Data Injection Attack Detection with Structural Knowledge","authors":"Qiushi Huang, Chenye Wu","doi":"10.23919/ACC53348.2022.9867695","DOIUrl":null,"url":null,"abstract":"State estimation is crucial to the reliable operation of the power grid. Hence, various cyber-physical attacks take advantage of manipulating the state estimation outcome to threaten grid reliability. Such cyber-physical attacks include fuzzing, malware injection and false data injection attack (FDIA). While the traditional residual-based error detection could prevent certain attacks, FDIA is not one of them. This study notices that matrix separation is a powerful tool in terms of FDIA detection. Thus, we cast FDIA detection into the matrix separation framework, embedding two types of structural knowledge. The first one highlights that only some rows in the attack matrix have nonzero values, while the second one emphasizes that the temporal variability of data collected by the same meter is usually small. Our proposed framework yields a structure embedding detection method, and numerical studies highlight its remarkable performance.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

State estimation is crucial to the reliable operation of the power grid. Hence, various cyber-physical attacks take advantage of manipulating the state estimation outcome to threaten grid reliability. Such cyber-physical attacks include fuzzing, malware injection and false data injection attack (FDIA). While the traditional residual-based error detection could prevent certain attacks, FDIA is not one of them. This study notices that matrix separation is a powerful tool in terms of FDIA detection. Thus, we cast FDIA detection into the matrix separation framework, embedding two types of structural knowledge. The first one highlights that only some rows in the attack matrix have nonzero values, while the second one emphasizes that the temporal variability of data collected by the same meter is usually small. Our proposed framework yields a structure embedding detection method, and numerical studies highlight its remarkable performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用结构知识增强假数据注入攻击检测
状态估计对电网的可靠运行至关重要。因此,各种网络物理攻击利用操纵状态估计结果来威胁电网的可靠性。此类网络物理攻击包括模糊攻击、恶意软件注入和虚假数据注入攻击(FDIA)。虽然传统的基于残差的错误检测可以防止某些攻击,但FDIA不是其中之一。本研究指出,矩阵分离是FDIA检测的有力工具。因此,我们将FDIA检测嵌入到矩阵分离框架中,嵌入两种类型的结构知识。第一个强调攻击矩阵中只有一些行具有非零值,而第二个强调同一仪表收集的数据的时间变异性通常很小。我们提出的框架产生了一种结构嵌入检测方法,数值研究表明了它的显著性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Connectivity during Multi-agent Consensus Dynamics via Model Predictive Control Gradient-Based Optimization for Anti-Windup PID Controls Power Management for Noise Aware Path Planning of Hybrid UAVs Fixed-Time Seeking and Tracking of Time-Varying Nash Equilibria in Noncooperative Games Aerial Interception of Non-Cooperative Intruder using Model Predictive Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1