Multi-scale Fusion and Channel Weighted CNN for Acoustic Scene Classification

Liping Yang, Xinxing Chen, Lianjie Tao, Xiaohua Gu
{"title":"Multi-scale Fusion and Channel Weighted CNN for Acoustic Scene Classification","authors":"Liping Yang, Xinxing Chen, Lianjie Tao, Xiaohua Gu","doi":"10.1145/3372806.3372809","DOIUrl":null,"url":null,"abstract":"Ensemble semantic features are useful for acoustic scene classification. In this paper, we proposed a multi-scale fusion and channel weighted CNN framework. The framework consists of two stages: the multi-scale feature fusion and channel weighting stages. The multi-scale feature fusion stage extracts hierarchy semantic feature maps using a CNN with simplified Xception architecture and then integrates multi-scale semantic features through a top-down pathway. The channel weighting stage squeezes feature maps into a channel descriptor and then transforms it into a set of channel weighting factors to reinforce the importance of each channel for acoustic scene classification. Experimental results on DCASE2018 acoustic scene classification subtask A and subtask B demonstrate the performances of the proposed framework.","PeriodicalId":340004,"journal":{"name":"International Conference on Signal Processing and Machine Learning","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Signal Processing and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3372806.3372809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Ensemble semantic features are useful for acoustic scene classification. In this paper, we proposed a multi-scale fusion and channel weighted CNN framework. The framework consists of two stages: the multi-scale feature fusion and channel weighting stages. The multi-scale feature fusion stage extracts hierarchy semantic feature maps using a CNN with simplified Xception architecture and then integrates multi-scale semantic features through a top-down pathway. The channel weighting stage squeezes feature maps into a channel descriptor and then transforms it into a set of channel weighting factors to reinforce the importance of each channel for acoustic scene classification. Experimental results on DCASE2018 acoustic scene classification subtask A and subtask B demonstrate the performances of the proposed framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多尺度融合和信道加权CNN的声场景分类
集成语义特征对声学场景分类非常有用。本文提出了一种多尺度融合和信道加权的CNN框架。该框架包括两个阶段:多尺度特征融合阶段和通道加权阶段。多尺度特征融合阶段使用简化Xception架构的CNN提取层次语义特征映射,然后通过自顶向下的路径整合多尺度语义特征。通道加权阶段将特征映射压缩为通道描述符,然后将其转换为一组通道加权因子,以增强每个通道对声学场景分类的重要性。在DCASE2018声学场景分类子任务A和子任务B上的实验结果验证了该框架的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-source Radar Data Fusion via Support Vector Regression Data Link Modeling and Simulation Based on DEVS Implement AI Service into VR Training Automated Detection of Sewer Pipe Defects Based on Cost-Sensitive Convolutional Neural Network Multi-Scale Deep Convolutional Nets with Attention Model and Conditional Random Fields for Semantic Image Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1