Film Quality Prediction Using Acoustic, Prosodic and Lexical Cues

Su Ji Park, Alan Rozet
{"title":"Film Quality Prediction Using Acoustic, Prosodic and Lexical Cues","authors":"Su Ji Park, Alan Rozet","doi":"10.1109/SLT48900.2021.9383509","DOIUrl":null,"url":null,"abstract":"In this paper, we propose using acoustic, prosodic, and lexical features to identify movie quality as a decision support tool for film producers. Using a dataset of movie trailer audio clips paired with audience ratings for the corresponding film, we trained machine learning models to predict a film’s rating. We further analyze the impact of prosodic features with neural network feature importance approaches and find differing influence across genres. We finally compare acoustic, prosodic, and lexical feature variance against film rating, and find some evidence for an inverse association.","PeriodicalId":243211,"journal":{"name":"2021 IEEE Spoken Language Technology Workshop (SLT)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT48900.2021.9383509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose using acoustic, prosodic, and lexical features to identify movie quality as a decision support tool for film producers. Using a dataset of movie trailer audio clips paired with audience ratings for the corresponding film, we trained machine learning models to predict a film’s rating. We further analyze the impact of prosodic features with neural network feature importance approaches and find differing influence across genres. We finally compare acoustic, prosodic, and lexical feature variance against film rating, and find some evidence for an inverse association.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用声学、韵律和词汇线索预测电影质量
在本文中,我们建议使用声学、韵律和词汇特征来识别电影质量,作为电影制片人的决策支持工具。使用与相应电影的观众评分配对的电影预告音频片段数据集,我们训练机器学习模型来预测电影的评分。我们进一步用神经网络特征重要性方法分析了韵律特征的影响,发现不同体裁对韵律特征的影响不同。最后,我们比较了声学、韵律和词汇特征方差与电影评级的关系,并找到了反比关联的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Through the Words of Viewers: Using Comment-Content Entangled Network for Humor Impression Recognition Analysis of Multimodal Features for Speaking Proficiency Scoring in an Interview Dialogue Convolution-Based Attention Model With Positional Encoding For Streaming Speech Recognition On Embedded Devices Two-Stage Augmentation and Adaptive CTC Fusion for Improved Robustness of Multi-Stream end-to-end ASR Speaker-Independent Visual Speech Recognition with the Inception V3 Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1