Mobile behaviometric framework for sociability assessment and identification of smartphone users

Fazel Anjomshoa, Matthew Catalfamo, Daniel Hecker, Nicklaus Helgeland, Andrew Rasch, B. Kantarci, M. Erol-Kantarci, S. Schuckers
{"title":"Mobile behaviometric framework for sociability assessment and identification of smartphone users","authors":"Fazel Anjomshoa, Matthew Catalfamo, Daniel Hecker, Nicklaus Helgeland, Andrew Rasch, B. Kantarci, M. Erol-Kantarci, S. Schuckers","doi":"10.1109/ISCC.2016.7543880","DOIUrl":null,"url":null,"abstract":"The widespread use of mobile technology has accelerated the popularity of social networking services, and has made these services convenient to access. This paper presents a behaviometric mobile application, namely TrackMaison (Track My activity in social networks). TrackMaison keeps track of social network service usage of smartphone users through data usage, location, usage frequency and session duration of five popular social network services. The data collected by the mobile application is presented to the smartphone user and is analyzed to aid in understanding mobile social network service usage. Furthermore, we introduce the social activity rate and sociability factor metrics where the former is a function of a user's relative data usage rate in social network services and the latter is a function of a user's relative session durations in social networks. By using TrackMaison tool, we identify three user behavior types. Those are active user profile, moderately active user profile and low active user profile. Through analysis of real data, we advocate that continuous identification/authentication of mobile device users is possible by using the introduced sociability metrics. We further present a case study on various Instagram user profiles, and show that low active profiles can be identified with negligible false acceptance rates (FAR) whereas a highly active user can be identified with a FAR as low as 3%.","PeriodicalId":148096,"journal":{"name":"2016 IEEE Symposium on Computers and Communication (ISCC)","volume":"33 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium on Computers and Communication (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC.2016.7543880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

The widespread use of mobile technology has accelerated the popularity of social networking services, and has made these services convenient to access. This paper presents a behaviometric mobile application, namely TrackMaison (Track My activity in social networks). TrackMaison keeps track of social network service usage of smartphone users through data usage, location, usage frequency and session duration of five popular social network services. The data collected by the mobile application is presented to the smartphone user and is analyzed to aid in understanding mobile social network service usage. Furthermore, we introduce the social activity rate and sociability factor metrics where the former is a function of a user's relative data usage rate in social network services and the latter is a function of a user's relative session durations in social networks. By using TrackMaison tool, we identify three user behavior types. Those are active user profile, moderately active user profile and low active user profile. Through analysis of real data, we advocate that continuous identification/authentication of mobile device users is possible by using the introduced sociability metrics. We further present a case study on various Instagram user profiles, and show that low active profiles can be identified with negligible false acceptance rates (FAR) whereas a highly active user can be identified with a FAR as low as 3%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能手机用户社交能力评估和识别的移动行为测量框架
移动技术的广泛使用加速了社交网络服务的普及,并使这些服务易于访问。本文介绍了一个行为测量移动应用程序,即TrackMaison(跟踪我在社交网络中的活动)。TrackMaison通过五种流行的社交网络服务的数据使用、位置、使用频率和会话持续时间来跟踪智能手机用户的社交网络服务使用情况。移动应用程序收集的数据呈现给智能手机用户,并进行分析,以帮助理解移动社交网络服务的使用情况。此外,我们引入了社交活动率和社交性因素指标,其中前者是用户在社交网络服务中的相对数据使用率的函数,后者是用户在社交网络中的相对会话持续时间的函数。通过使用TrackMaison工具,我们确定了三种用户行为类型。它们分别是活跃用户,中度活跃用户和低活跃用户。通过对真实数据的分析,我们主张使用引入的社交性指标可以对移动设备用户进行持续识别/认证。我们进一步提出了一个关于各种Instagram用户配置文件的案例研究,并表明低活跃配置文件可以被忽略不计的错误接受率(FAR)识别,而高活跃用户的错误接受率可以低至3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint power control and sub-channel allocation for co-channel OFDMA femtocells Measuring the users and conversations of a vibrant online emotional support system An efficient KP-ABE scheme for content protection in Information-Centric Networking Energy-efficient MAC schemes for Delay-Tolerant Sensor Networks FRT-Skip Graph: A Skip Graph-style structured overlay based on Flexible Routing Tables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1