Digital Twin Enabled Industry 4.0 Predictive Maintenance Under Reliability-Centred Strategy

A. Mubarak, M. Asmelash, A. Azhari, Tamiru Alemu, Freselam Mulubrhan, K. Saptaji
{"title":"Digital Twin Enabled Industry 4.0 Predictive Maintenance Under Reliability-Centred Strategy","authors":"A. Mubarak, M. Asmelash, A. Azhari, Tamiru Alemu, Freselam Mulubrhan, K. Saptaji","doi":"10.1109/ICEEICT53079.2022.9768590","DOIUrl":null,"url":null,"abstract":"This paper introduces the idea of implementing digital twin for predictive maintenance under open system architecture. Predictive maintenance (PdM) is critical to machines operating under complex working conditions to prevent major and unexpected machine failures and production downtime. A cost and reliability optimized predictive maintenance framework for industry 4.0 machines key parts based on qualitative and quantitative analysis of monitoring data is proposed. Employing machine learning and advanced analytics for data fusion for PdM promises for accurate failure diagnostics and prognostics in addition to optimized maintenance decisions. Furthermore, a cost effective maintenance framework can be implemented under reliability centered maintenance strategy. The qualitative and quantitative analysis will help the decision-making process that leads to accurate predictive maintenance strategies. The proposed method is expected to provide cost-effective maintenance and improved intelligence of the predictive process and the accuracy of predictive results.","PeriodicalId":201910,"journal":{"name":"2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEICT53079.2022.9768590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper introduces the idea of implementing digital twin for predictive maintenance under open system architecture. Predictive maintenance (PdM) is critical to machines operating under complex working conditions to prevent major and unexpected machine failures and production downtime. A cost and reliability optimized predictive maintenance framework for industry 4.0 machines key parts based on qualitative and quantitative analysis of monitoring data is proposed. Employing machine learning and advanced analytics for data fusion for PdM promises for accurate failure diagnostics and prognostics in addition to optimized maintenance decisions. Furthermore, a cost effective maintenance framework can be implemented under reliability centered maintenance strategy. The qualitative and quantitative analysis will help the decision-making process that leads to accurate predictive maintenance strategies. The proposed method is expected to provide cost-effective maintenance and improved intelligence of the predictive process and the accuracy of predictive results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在以可靠性为中心的战略下,数字孪生实现工业4.0预测性维护
本文介绍了在开放系统架构下,实现数字孪生预测维护的思想。预测性维护(PdM)对于在复杂工作条件下运行的机器至关重要,可以防止重大和意外的机器故障和生产停机。提出了一种基于监测数据定性和定量分析的工业4.0机器关键部件成本和可靠性优化预测维护框架。采用机器学习和高级分析技术进行PdM数据融合,除了优化维护决策外,还有望实现准确的故障诊断和预测。此外,在以可靠性为中心的维护策略下,可以实现成本有效的维护框架。定性和定量分析将有助于制定准确的预测性维护策略。所提出的方法有望提供经济有效的维护,提高预测过程的智能化和预测结果的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Packet Transmission using Radio Access Protocol for Intra-Cluster Communications in Mobile Ad hoc Networks Performance of Combined RF and non-RF based Energy Harvesting scheme for Multi-Relay Cooperative Cognitive Radio Network Image Recognition, Classification and Analysis Using Convolutional Neural Networks An Optimized technique for a Sapid Motor pooling Tariff Forecasting System Pneumothorax Segmentation from Chest X-Rays Using U-Net/U-Net++ Architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1