Iterative learning identification using quantized observations

Xuhui Bu, Jian Liu, Z. Hou
{"title":"Iterative learning identification using quantized observations","authors":"Xuhui Bu, Jian Liu, Z. Hou","doi":"10.1109/DDCLS.2017.8068090","DOIUrl":null,"url":null,"abstract":"This paper develops a novel iterative learning parameter identification algorithm for a class of single parameter systems with multi-threshold quantized observations. The identification algorithm is constructed along the iteration axis and it can incorporate the parameter identification ability and the learning ability to deal with unknown time-varying parameters. Based on the recursive form of the estimation error along the iteration axis, it is proved that the convergence of parameter estimation can be guaranteed over the whole finite time interval. A numerical example is given to demonstrate the effectiveness of the algorithms.","PeriodicalId":419114,"journal":{"name":"2017 6th Data Driven Control and Learning Systems (DDCLS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 6th Data Driven Control and Learning Systems (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2017.8068090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper develops a novel iterative learning parameter identification algorithm for a class of single parameter systems with multi-threshold quantized observations. The identification algorithm is constructed along the iteration axis and it can incorporate the parameter identification ability and the learning ability to deal with unknown time-varying parameters. Based on the recursive form of the estimation error along the iteration axis, it is proved that the convergence of parameter estimation can be guaranteed over the whole finite time interval. A numerical example is given to demonstrate the effectiveness of the algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用量化观测的迭代学习识别
针对一类具有多阈值量化观测值的单参数系统,提出了一种新的迭代学习参数辨识算法。该辨识算法沿迭代轴构造,具有参数辨识能力和处理未知时变参数的学习能力。基于估计误差沿迭代轴的递推形式,证明了参数估计在整个有限时间区间内的收敛性。算例验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-free adaptive MIMO control algorithm application in polishing robot Multiple-fault diagnosis of analog circuit with fault tolerance Iterative learning control for switched singular systems Active disturbance rejection generalized predictive control and its application on large time-delay systems Robust ADRC for nonlinear time-varying system with uncertainties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1