{"title":"Matrix-value regression for single-image super-resolution","authors":"Yi Tang, Hong Chen","doi":"10.1109/ICWAPR.2013.6599319","DOIUrl":null,"url":null,"abstract":"Single-image super-resolution is firstly treated as a problem of matrix-value regression. By using matrix-value regression techniques, some desired properties are found. Firstly, the matrix-value regression technique greatly promotes the efficiency of learning from image pairs. As a result, the matrix-value regression based super-resolution algorithm can be smoothly applied to big data setting. Secondly, the matrix-value regression technique makes it possible to design a patch-to-patch super-resolution algorithm. As far as we know, it is the first patch-to-patch algorithm in the field of single-image super-resolution. Experimental results have shown the efficiency of the matrix-value regression based super-resolution algorithm in the training process. Meanwhile, it is also shown that the performance of the proposed algorithm is competitive to most of state-of-the-art super-resolution algorithms.","PeriodicalId":236156,"journal":{"name":"2013 International Conference on Wavelet Analysis and Pattern Recognition","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2013.6599319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Single-image super-resolution is firstly treated as a problem of matrix-value regression. By using matrix-value regression techniques, some desired properties are found. Firstly, the matrix-value regression technique greatly promotes the efficiency of learning from image pairs. As a result, the matrix-value regression based super-resolution algorithm can be smoothly applied to big data setting. Secondly, the matrix-value regression technique makes it possible to design a patch-to-patch super-resolution algorithm. As far as we know, it is the first patch-to-patch algorithm in the field of single-image super-resolution. Experimental results have shown the efficiency of the matrix-value regression based super-resolution algorithm in the training process. Meanwhile, it is also shown that the performance of the proposed algorithm is competitive to most of state-of-the-art super-resolution algorithms.