S. Khadijah, T. Akitsu, T. Otagawa, S. Yamazaki, T. Sakurai
{"title":"Investigating intensities of very high voltage rise dv/dt pulsed power source in atmospheric microplasma","authors":"S. Khadijah, T. Akitsu, T. Otagawa, S. Yamazaki, T. Sakurai","doi":"10.1109/PPPS.2007.4345521","DOIUrl":null,"url":null,"abstract":"Micro barrier discharge operating at atmospheric air was excited by a compact pulse generator which has the capability to produce fast rising voltage pulse with maximum rise up voltage as high as 435MV/s. Sequences of images and its intensity values were recorded at 100 nanoseconds intervals as a function of gap distance and applied voltage. Results showed that the discharge intensities are afterglow microplasma. Maximum intensity values were obtained at approximate time for each condition. Uniformity of discharge obtained when gap distance was 600 μm and applied voltage was 6 kV.","PeriodicalId":275106,"journal":{"name":"2007 16th IEEE International Pulsed Power Conference","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 16th IEEE International Pulsed Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPPS.2007.4345521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Micro barrier discharge operating at atmospheric air was excited by a compact pulse generator which has the capability to produce fast rising voltage pulse with maximum rise up voltage as high as 435MV/s. Sequences of images and its intensity values were recorded at 100 nanoseconds intervals as a function of gap distance and applied voltage. Results showed that the discharge intensities are afterglow microplasma. Maximum intensity values were obtained at approximate time for each condition. Uniformity of discharge obtained when gap distance was 600 μm and applied voltage was 6 kV.