Efficient data gathering using Compressed Sparse Functions

Liwen Xu, Xiao Qi, Yuexuan Wang, T. Moscibroda
{"title":"Efficient data gathering using Compressed Sparse Functions","authors":"Liwen Xu, Xiao Qi, Yuexuan Wang, T. Moscibroda","doi":"10.1109/INFCOM.2013.6566785","DOIUrl":null,"url":null,"abstract":"Data gathering is one of the core algorithmic and theoretic problems in wireless sensor networks. In this paper, we propose a novel approach - Compressed Sparse Functions - to efficiently gather data through the use of highly sophisticated Compressive Sensing techniques. The idea of CSF is to gather a compressed version of a satisfying function (containing all the data) under a suitable function base, and to finally recover the original data. We show through theoretical analysis that our scheme significantly outperforms state-of-the-art methods in terms of efficiency, while matching them in terms of accuracy. For example, in a binary tree-structured network of n nodes, our solution reduces the number of packets from the best-known O(kn log n) to O(k log2 n), where k is a parameter depending on the correlation of the underlying sensor data. Finally, we provide simulations showing that our solution can save up to 80% of communication overhead in a 100-node network. Extensive simulations further show that our solution is robust, high-capacity and low-delay.","PeriodicalId":206346,"journal":{"name":"2013 Proceedings IEEE INFOCOM","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Proceedings IEEE INFOCOM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOM.2013.6566785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Data gathering is one of the core algorithmic and theoretic problems in wireless sensor networks. In this paper, we propose a novel approach - Compressed Sparse Functions - to efficiently gather data through the use of highly sophisticated Compressive Sensing techniques. The idea of CSF is to gather a compressed version of a satisfying function (containing all the data) under a suitable function base, and to finally recover the original data. We show through theoretical analysis that our scheme significantly outperforms state-of-the-art methods in terms of efficiency, while matching them in terms of accuracy. For example, in a binary tree-structured network of n nodes, our solution reduces the number of packets from the best-known O(kn log n) to O(k log2 n), where k is a parameter depending on the correlation of the underlying sensor data. Finally, we provide simulations showing that our solution can save up to 80% of communication overhead in a 100-node network. Extensive simulations further show that our solution is robust, high-capacity and low-delay.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用压缩稀疏函数的高效数据收集
数据采集是无线传感器网络的核心算法和理论问题之一。在本文中,我们提出了一种新颖的方法-压缩稀疏函数-通过使用高度复杂的压缩感知技术来有效地收集数据。CSF的思想是在合适的函数库下收集一个满意的函数(包含所有数据)的压缩版本,最终恢复原始数据。我们通过理论分析表明,我们的方案在效率方面显着优于最先进的方法,同时在准确性方面与其相匹配。例如,在n个节点的二叉树结构网络中,我们的解决方案将数据包的数量从最著名的O(kn log n)减少到O(k log2 n),其中k是一个参数,取决于底层传感器数据的相关性。最后,我们提供的模拟表明,我们的解决方案可以在100个节点的网络中节省高达80%的通信开销。大量的仿真进一步证明了我们的方案具有鲁棒性、高容量和低延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
VoteTrust: Leveraging friend invitation graph to defend against social network Sybils Groupon in the Air: A three-stage auction framework for Spectrum Group-buying Into the Moana1 — Hypergraph-based network layer indirection Prometheus: Privacy-aware data retrieval on hybrid cloud Adaptive device-free passive localization coping with dynamic target speed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1