Pedro Tovar, Luis E. Ynoquio H, J. P. Weid, Vladimir B. RJabulkaibeiro, R. Ribeiro
{"title":"Time-Resolved spectroscopy for laser chirp characterization and self-heterodyne generation of apodized-NLFM microwave pulses","authors":"Pedro Tovar, Luis E. Ynoquio H, J. P. Weid, Vladimir B. RJabulkaibeiro, R. Ribeiro","doi":"10.1109/MWP.2018.8552851","DOIUrl":null,"url":null,"abstract":"This paper reports the photonic generation of apodized non-linear frequency modulation (NLFM) microwave pulses by using a self-heterodyne scheme. Time-resolved optical spectroscopy was developed for the characterization of the laser diode chirp. By using a step-shaped current stimulus the laser chirp transfer function H(s) was obtained.With knowledge of H(s), a numerical model produced the suitable current stimulus i(t) needed to generate apodized-shaped radio frequency chirped pulses through self-heterodyning. Experiment results agreed with the numerical simulations.","PeriodicalId":146799,"journal":{"name":"2018 International Topical Meeting on Microwave Photonics (MWP)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Topical Meeting on Microwave Photonics (MWP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWP.2018.8552851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper reports the photonic generation of apodized non-linear frequency modulation (NLFM) microwave pulses by using a self-heterodyne scheme. Time-resolved optical spectroscopy was developed for the characterization of the laser diode chirp. By using a step-shaped current stimulus the laser chirp transfer function H(s) was obtained.With knowledge of H(s), a numerical model produced the suitable current stimulus i(t) needed to generate apodized-shaped radio frequency chirped pulses through self-heterodyning. Experiment results agreed with the numerical simulations.