Occurrence And Occupational Risk Of Polybrominated Diphenyl Ethers (PBDEs) And Dechloran Plus (DP) In A Formal E-Waste Recycling Plant, Northwest China
{"title":"Occurrence And Occupational Risk Of Polybrominated Diphenyl Ethers (PBDEs) And Dechloran Plus (DP) In A Formal E-Waste Recycling Plant, Northwest China","authors":"Hongmei Cao","doi":"10.24966/escr-5020/s2001","DOIUrl":null,"url":null,"abstract":"To prevent widespread diffusion of toxic chemicals from e-waste recycling industry in southern and eastern China, a scaled e-waste recycling industry is being relocated to northwestern China. The present study examined the levels of several chemicals in a typical e-waste recycling plant in north western China. In the first phase of our field sampling campaign, we collected total 100 PM1.0, PM2.5, PM10 and gas phase samples about PBDEs and DP at three sampling sites. The ambient mean concentrations of ∑9PBDEs and ∑DP in particle and gas phase during the whole sampling period followed a sequence of indoor>outdoor>background. The highest level of ∑9PBDEs and ∑DP in particle phase were found in PM2.5 at the indoor site were 1978.58 pg/m3 and 155.50 pg/m3, respectively. The highest concentration of ∑9PBDEs in gas phase also appeared at the indoor site at 7.33 pg/m3, followed by the outdoor site (4.10 pg/ m3), and the background site (0.70 pg/m3). DP concentrations in gas phase were 0.63 pg/m3 at the indoor site and 0.10 pg/m3 at outdoor site, respectively. BDE-209 was the dominant congener in all particles at the indoor site. PBDEs and DP were mainly adsorbed to the particulate phase, especially in PM2.5. The inhalation exposure risk assessment combined with the particle size distribution suggested that PM2.5-bounded PBDEs and DP exhibited the highest inhalation risk and deposition flux in the alveolar region and had the largest relative contribution to health risks.","PeriodicalId":138820,"journal":{"name":"Environmental Science: Current Research","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Current Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24966/escr-5020/s2001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To prevent widespread diffusion of toxic chemicals from e-waste recycling industry in southern and eastern China, a scaled e-waste recycling industry is being relocated to northwestern China. The present study examined the levels of several chemicals in a typical e-waste recycling plant in north western China. In the first phase of our field sampling campaign, we collected total 100 PM1.0, PM2.5, PM10 and gas phase samples about PBDEs and DP at three sampling sites. The ambient mean concentrations of ∑9PBDEs and ∑DP in particle and gas phase during the whole sampling period followed a sequence of indoor>outdoor>background. The highest level of ∑9PBDEs and ∑DP in particle phase were found in PM2.5 at the indoor site were 1978.58 pg/m3 and 155.50 pg/m3, respectively. The highest concentration of ∑9PBDEs in gas phase also appeared at the indoor site at 7.33 pg/m3, followed by the outdoor site (4.10 pg/ m3), and the background site (0.70 pg/m3). DP concentrations in gas phase were 0.63 pg/m3 at the indoor site and 0.10 pg/m3 at outdoor site, respectively. BDE-209 was the dominant congener in all particles at the indoor site. PBDEs and DP were mainly adsorbed to the particulate phase, especially in PM2.5. The inhalation exposure risk assessment combined with the particle size distribution suggested that PM2.5-bounded PBDEs and DP exhibited the highest inhalation risk and deposition flux in the alveolar region and had the largest relative contribution to health risks.