Transfer Learning for Efficiency Map Prediction

Arbaaz Khan, M. H. Mohammadi, V. Ghorbanian, D. Lowther
{"title":"Transfer Learning for Efficiency Map Prediction","authors":"Arbaaz Khan, M. H. Mohammadi, V. Ghorbanian, D. Lowther","doi":"10.1109/CEFC46938.2020.9451362","DOIUrl":null,"url":null,"abstract":"This paper explores methods to extend a trained deep neural network for predicting efficiency maps to work on different motor drive topologies. This procedure reduces the computation cost associated with training deep networks by transferring knowledge over similar tasks handled by the deep networks. Two types of synchronous AC machines, including a flat-type interior and a surface-mounted permanent magnet motor are tested over their entire torque-speed profiles to validate the applicability of the proposed methodology. The obtained results demonstrate an improvement in both computation time required for training and a reduction in the size of the required dataset for transfer learning. Also, the performance is compared with conventional supervised learning on the same data and the same neural network architecture.","PeriodicalId":439411,"journal":{"name":"2020 IEEE 19th Biennial Conference on Electromagnetic Field Computation (CEFC)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 19th Biennial Conference on Electromagnetic Field Computation (CEFC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEFC46938.2020.9451362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper explores methods to extend a trained deep neural network for predicting efficiency maps to work on different motor drive topologies. This procedure reduces the computation cost associated with training deep networks by transferring knowledge over similar tasks handled by the deep networks. Two types of synchronous AC machines, including a flat-type interior and a surface-mounted permanent magnet motor are tested over their entire torque-speed profiles to validate the applicability of the proposed methodology. The obtained results demonstrate an improvement in both computation time required for training and a reduction in the size of the required dataset for transfer learning. Also, the performance is compared with conventional supervised learning on the same data and the same neural network architecture.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
效率图预测的迁移学习
本文探讨了将一个训练好的深度神经网络用于预测效率图的方法扩展到不同的电机驱动拓扑上。该方法通过将知识转移到由深度网络处理的类似任务上,减少了与训练深度网络相关的计算成本。两种类型的同步交流电机,包括平面型内部和表面安装的永磁电机,在其整个转矩-速度剖面上进行测试,以验证所提出方法的适用性。得到的结果表明,训练所需的计算时间和迁移学习所需数据集的大小都有所改善。在相同的数据和相同的神经网络结构下,将其性能与传统的监督学习进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Objective Optimization of Medium-Scale Wound-Field Electric Generators Optimization Analysis of Inherent Shaft Voltage in Line-Start Permanent Magnet Synchronous Motor Compact Triplex-layer Metamaterials Design for Wireless Power Transfer Efficiency Enhancement Characteristic Analysis of a Permanent Magnet Eddy-Current Brake Under Strong Impact Load Design of Thin, High Permittivity, Multiband, Monopole-Like Antennas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1