Low-Power Convolutional Neural Network Accelerator on FPGA

Kasem Khalil, Ashok Kumar V, M. Bayoumi
{"title":"Low-Power Convolutional Neural Network Accelerator on FPGA","authors":"Kasem Khalil, Ashok Kumar V, M. Bayoumi","doi":"10.1109/AICAS57966.2023.10168646","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Network (CNN) accelerator is highly beneficial for mobile and resource-constrained devices. One of the research challenges is to design a power-economic accelerator. This paper proposes a CNN accelerator with low power consumption and acceptable performance. The proposed method uses pipelining between the used kernels for the convolution process and a shared multiplication and accumulation block. The available kernels work consequently while each one performs a different operation in sequence. The proposed method utilizes a series of operations between the kernels and memory weights to speed up the convolution process. The proposed accelerator is implemented using VHDL and FPGA Altera Arria 10 GX. The results show that the proposed method achieves 26.37 GOPS/W of energy consumption, which is lower than the existing method, with acceptable resource usage and performance. The proposed method is ideally suited for small and constrained devices.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Convolutional Neural Network (CNN) accelerator is highly beneficial for mobile and resource-constrained devices. One of the research challenges is to design a power-economic accelerator. This paper proposes a CNN accelerator with low power consumption and acceptable performance. The proposed method uses pipelining between the used kernels for the convolution process and a shared multiplication and accumulation block. The available kernels work consequently while each one performs a different operation in sequence. The proposed method utilizes a series of operations between the kernels and memory weights to speed up the convolution process. The proposed accelerator is implemented using VHDL and FPGA Altera Arria 10 GX. The results show that the proposed method achieves 26.37 GOPS/W of energy consumption, which is lower than the existing method, with acceptable resource usage and performance. The proposed method is ideally suited for small and constrained devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于FPGA的低功耗卷积神经网络加速器
卷积神经网络(CNN)加速器对移动设备和资源受限设备非常有利。研究的挑战之一是设计一个功率经济加速器。本文提出了一种低功耗、性能可接受的CNN加速器。该方法在卷积过程中使用核之间的流水线和共享乘法和累积块。当每个内核按顺序执行不同的操作时,可用的内核就会工作。该方法利用核和内存权值之间的一系列操作来加快卷积过程。该加速器采用VHDL和FPGA Altera Arria 10gx实现。结果表明,所提方法能耗达到26.37 GOPS/W,比现有方法低,且具有可接受的资源利用率和性能。所提出的方法非常适合小型和受限的设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synaptic metaplasticity with multi-level memristive devices Unsupervised Learning of Spike-Timing-Dependent Plasticity Based on a Neuromorphic Implementation A Fully Differential 4-Bit Analog Compute-In-Memory Architecture for Inference Application Convergent Waveform Relaxation Schemes for the Transient Analysis of Associative ReLU Arrays Performance Assessment of an Extremely Energy-Efficient Binary Neural Network Using Adiabatic Superconductor Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1