Electricity Price Prediction Based on LSTM and LightGBM

Hui Deng, Fei Yan, Hao Wang, Le Fang, Ziqing Zhou, Feng Zhang, Chen Xu, Haihui Jiang
{"title":"Electricity Price Prediction Based on LSTM and LightGBM","authors":"Hui Deng, Fei Yan, Hao Wang, Le Fang, Ziqing Zhou, Feng Zhang, Chen Xu, Haihui Jiang","doi":"10.1109/ICECE54449.2021.9674719","DOIUrl":null,"url":null,"abstract":"In the open electricity market, short-term electricity price forecasting is a significant research direction. At present, a single prediction model will have different prediction deviations when predicting. This article proposes a method to simultaneously input the original data into the LSTM network and the LightGBM model. Simultaneously. Models with higher prediction limits. Experiments have proved that the combined model can effectively increase the lower limit of prediction.","PeriodicalId":166178,"journal":{"name":"2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE)","volume":"423 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECE54449.2021.9674719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In the open electricity market, short-term electricity price forecasting is a significant research direction. At present, a single prediction model will have different prediction deviations when predicting. This article proposes a method to simultaneously input the original data into the LSTM network and the LightGBM model. Simultaneously. Models with higher prediction limits. Experiments have proved that the combined model can effectively increase the lower limit of prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于LSTM和LightGBM的电价预测
在开放电力市场中,短期电价预测是一个重要的研究方向。目前单一的预测模型在预测时会有不同的预测偏差。本文提出了一种将原始数据同时输入LSTM网络和LightGBM模型的方法。同时进行。具有较高预测限的模型。实验证明,该组合模型能有效提高预测下限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of Emergency Rescue Command Platform Based on Satellite Mobile Communication System Multi-Dimensional Spectrum Data Denoising Based on Tensor Theory Predicting COVID-19 Severe Patients and Evaluation Method of 3 Stages Severe Level by Machine Learning A Novel Stacking Framework Based On Hybrid of Gradient Boosting-Adaptive Boosting-Multilayer Perceptron for Crash Injury Severity Prediction and Analysis Key Techniques on Unified Identity Authentication in OpenMBEE Integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1