3D stochastic completion fields for fiber tractography

P. MomayyezSiahkal, Kaleem Siddiqi
{"title":"3D stochastic completion fields for fiber tractography","authors":"P. MomayyezSiahkal, Kaleem Siddiqi","doi":"10.1109/CVPRW.2009.5204044","DOIUrl":null,"url":null,"abstract":"We approach the problem of fiber tractography from the viewpoint that a computational theory should relate to the underlying quantity that is being measured - the diffusion of water molecules. We characterize the Brownian motion of water by a 3D random walk described by a stochastic non-linear differential equation. We show that the maximum-likelihood trajectories are 3D elastica, or curves of least energy. We illustrate the model with Monte-Carlo (sequential) simulations and then develop a more efficient (local, parallelizable) implementation, based on the Fokker-Planck equation. The final algorithm allows us to efficiently compute stochastic completion fields to connect a source region to a sink region, while taking into account the underlying diffusion MRI data. We demonstrate promising tractography results using high angular resolution diffusion data as input.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We approach the problem of fiber tractography from the viewpoint that a computational theory should relate to the underlying quantity that is being measured - the diffusion of water molecules. We characterize the Brownian motion of water by a 3D random walk described by a stochastic non-linear differential equation. We show that the maximum-likelihood trajectories are 3D elastica, or curves of least energy. We illustrate the model with Monte-Carlo (sequential) simulations and then develop a more efficient (local, parallelizable) implementation, based on the Fokker-Planck equation. The final algorithm allows us to efficiently compute stochastic completion fields to connect a source region to a sink region, while taking into account the underlying diffusion MRI data. We demonstrate promising tractography results using high angular resolution diffusion data as input.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纤维束成像的三维随机完井场
我们从计算理论应该与被测量的潜在量——水分子的扩散——相关的观点来处理纤维束图的问题。我们用随机非线性微分方程描述的三维随机游走来表征水的布朗运动。我们表明,最大似然轨迹是三维弹性的,或能量最小的曲线。我们用蒙特卡罗(顺序)模拟说明了该模型,然后基于Fokker-Planck方程开发了一个更有效的(局部的,可并行化的)实现。最后的算法允许我们有效地计算随机补全场,将源区域连接到汇聚区域,同时考虑到潜在的扩散MRI数据。我们展示了有希望的牵引成像结果使用高角分辨率的扩散数据作为输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time 3D modeling of static scenes using solely a Time-of-Flight sensor Image matching in large scale indoor environment Learning to segment using machine-learned penalized logistic models Modeling and exploiting the spatio-temporal facial action dependencies for robust spontaneous facial expression recognition Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1