{"title":"Dilated Convolution based U-Net Architecture for Ocean Eddy Detection","authors":"Shaik John Saida, S. Ari","doi":"10.1109/SILCON55242.2022.10028960","DOIUrl":null,"url":null,"abstract":"Ocean eddies have a significant effect on the maritime environment. They are necessary for carrying a variety of ocean traces across the ocean. Eddy detection is one of the most active fields of physical oceanographic research. Although it is a new trend, using deep learning algorithms to find eddies is still in its early stages. The different sizes and shapes of eddies make automatic eddy segmentation challenging. U-Net makes a dense prediction to solve this problem. However, the network architecture is very intricate. In this paper, a dilated convolution U-Net is developed for the semantic segmentation of ocean eddies using sea surface height data. This technique decreases architectural complexity without sacrificing performance. Further, a new residual path is proposed to cascade encoder outputs with the decoder. The experimental results demonstrate that the proposed architecture outperforms the existing deep learning techniques for eddy detection.","PeriodicalId":183947,"journal":{"name":"2022 IEEE Silchar Subsection Conference (SILCON)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Silchar Subsection Conference (SILCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SILCON55242.2022.10028960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ocean eddies have a significant effect on the maritime environment. They are necessary for carrying a variety of ocean traces across the ocean. Eddy detection is one of the most active fields of physical oceanographic research. Although it is a new trend, using deep learning algorithms to find eddies is still in its early stages. The different sizes and shapes of eddies make automatic eddy segmentation challenging. U-Net makes a dense prediction to solve this problem. However, the network architecture is very intricate. In this paper, a dilated convolution U-Net is developed for the semantic segmentation of ocean eddies using sea surface height data. This technique decreases architectural complexity without sacrificing performance. Further, a new residual path is proposed to cascade encoder outputs with the decoder. The experimental results demonstrate that the proposed architecture outperforms the existing deep learning techniques for eddy detection.