SfMLearner++: Learning Monocular Depth & Ego-Motion Using Meaningful Geometric Constraints

V. Prasad, B. Bhowmick
{"title":"SfMLearner++: Learning Monocular Depth & Ego-Motion Using Meaningful Geometric Constraints","authors":"V. Prasad, B. Bhowmick","doi":"10.1109/WACV.2019.00226","DOIUrl":null,"url":null,"abstract":"Most geometric approaches to monocular Visual Odometry (VO) provide robust pose estimates, but sparse or semi-dense depth estimates. Off late, deep methods have shown good performance in generating dense depths and VO from monocular images by optimizing the photometric consistency between images. Despite being intuitive, a naive photometric loss does not ensure proper pixel correspondences between two views, which is the key factor for accurate depth and relative pose estimations. It is a well known fact that simply minimizing such an error is prone to failures. We propose a method using Epipolar constraints to make the learning more geometrically sound. We use the Essential matrix, obtained using Nistér's Five Point Algorithm, for enforcing meaningful geometric constraints on the loss, rather than using it as labels for training. Our method, although simplistic but more geometrically meaningful, uses lesser number of parameters to give a comparable performance to state-of-the-art methods which use complex losses and large networks showing the effectiveness of using epipolar constraints. Such a geometrically constrained learning method performs successfully even in cases where simply minimizing the photometric error would fail.","PeriodicalId":436637,"journal":{"name":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2019.00226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Most geometric approaches to monocular Visual Odometry (VO) provide robust pose estimates, but sparse or semi-dense depth estimates. Off late, deep methods have shown good performance in generating dense depths and VO from monocular images by optimizing the photometric consistency between images. Despite being intuitive, a naive photometric loss does not ensure proper pixel correspondences between two views, which is the key factor for accurate depth and relative pose estimations. It is a well known fact that simply minimizing such an error is prone to failures. We propose a method using Epipolar constraints to make the learning more geometrically sound. We use the Essential matrix, obtained using Nistér's Five Point Algorithm, for enforcing meaningful geometric constraints on the loss, rather than using it as labels for training. Our method, although simplistic but more geometrically meaningful, uses lesser number of parameters to give a comparable performance to state-of-the-art methods which use complex losses and large networks showing the effectiveness of using epipolar constraints. Such a geometrically constrained learning method performs successfully even in cases where simply minimizing the photometric error would fail.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SfMLearner++:使用有意义的几何约束学习单目深度和自我运动
大多数几何方法的单目视觉距离测量(VO)提供鲁棒的姿态估计,但稀疏或半密集的深度估计。近年来,深度方法通过优化图像之间的光度一致性,在单眼图像生成密集深度和VO方面表现出良好的性能。尽管是直观的,幼稚的光度损失并不能确保两个视图之间适当的像素对应,这是准确的深度和相对姿态估计的关键因素。这是一个众所周知的事实,简单地最小化这样的错误是容易失败的。我们提出了一种使用极限约束的方法,使学习在几何上更加合理。我们使用本质矩阵(Essential matrix),通过nist的五点算法(Five Point Algorithm)获得,对损失施加有意义的几何约束,而不是将其用作训练的标签。我们的方法虽然简单,但在几何上更有意义,使用较少数量的参数来提供与使用复杂损失和大型网络的最先进方法相当的性能,显示使用极外约束的有效性。这种几何约束的学习方法即使在简单地最小化光度误差失败的情况下也能成功地执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ancient Painting to Natural Image: A New Solution for Painting Processing GAN-Based Pose-Aware Regulation for Video-Based Person Re-Identification Coupled Generative Adversarial Network for Continuous Fine-Grained Action Segmentation Dense 3D Point Cloud Reconstruction Using a Deep Pyramid Network 3D Reconstruction and Texture Optimization Using a Sparse Set of RGB-D Cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1