DDoS Detection Using Hybrid Deep Neural Network Approaches

Vanlalruata Hnamte, J. Hussain
{"title":"DDoS Detection Using Hybrid Deep Neural Network Approaches","authors":"Vanlalruata Hnamte, J. Hussain","doi":"10.1109/I2CT57861.2023.10126434","DOIUrl":null,"url":null,"abstract":"In this study, we provide Deep Neural Network (DNN) based approaches to detecting Distributed Denial-of-Service (DDoS) attacks. In order to improve the DNN’s accuracy, the suggested approaches use two different hybrid DNN scenario detections to demonstrate the possibilities. As training and testing data, we use the publicly available Intrusion Detection datasets; CIC-IDS2017 and CIC-DDoS2019. Experiments have shown that the presented approaches are 99.9% effective at detecting attacks.","PeriodicalId":150346,"journal":{"name":"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CT57861.2023.10126434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we provide Deep Neural Network (DNN) based approaches to detecting Distributed Denial-of-Service (DDoS) attacks. In order to improve the DNN’s accuracy, the suggested approaches use two different hybrid DNN scenario detections to demonstrate the possibilities. As training and testing data, we use the publicly available Intrusion Detection datasets; CIC-IDS2017 and CIC-DDoS2019. Experiments have shown that the presented approaches are 99.9% effective at detecting attacks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合深度神经网络的DDoS检测
在这项研究中,我们提供了基于深度神经网络(DNN)的方法来检测分布式拒绝服务(DDoS)攻击。为了提高深度神经网络的准确性,建议的方法使用两种不同的混合深度神经网络场景检测来演示可能性。作为训练和测试数据,我们使用公开可用的入侵检测数据集;CIC-IDS2017和CIC-DDoS2019。实验表明,该方法检测攻击的效率为99.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation on Impact of Partial Shading on Solar PV Array Character and Word Level Gesture Recognition of Indian Sign Language Electricity Theft Detection Employing Machine Learning Algorithms Precision Agriculture: Classifying Banana Leaf Diseases with Hybrid Deep Learning Models Multimodal Question Generation using Multimodal Adaptation Gate (MAG) and BERT-based Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1