Semi-supervised classification of hyperspectral image based on spectral and extended morphological profiles

Junshu Wang, Guoming Zhang, Min Cao, Nan Jiang
{"title":"Semi-supervised classification of hyperspectral image based on spectral and extended morphological profiles","authors":"Junshu Wang, Guoming Zhang, Min Cao, Nan Jiang","doi":"10.1109/WHISPERS.2016.8071701","DOIUrl":null,"url":null,"abstract":"The contradiction between high dimensional data and limited training samples is the main problem in hyperspectral remote sensing images classification. How to obtain high classification accuracy with limited labeled samples is an urgent issue. We propose a semisupervised classification algorithm SSP_EMP for hyperspectral remote sensing images based on spectral and spatial information. The spatial information is extracted by building extended morphological profiles (EMP) based on principle components of hyperspectral image. Utilize spectral and EMP from two view to enrich knowledge, and integrate the useful information of unlabeled data at the most extent to optimize the classifier. Pick high confident samples to augment training set and retrain the classifier. This process is performed iteratively. The proposed algorithm is tested on AVIRIS Indian Pines. Experimental results show significant improvements in terms of accuracy and kappa coefficient compared with the classification results based on spectral, EMP and the combination of spectral and EMP.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The contradiction between high dimensional data and limited training samples is the main problem in hyperspectral remote sensing images classification. How to obtain high classification accuracy with limited labeled samples is an urgent issue. We propose a semisupervised classification algorithm SSP_EMP for hyperspectral remote sensing images based on spectral and spatial information. The spatial information is extracted by building extended morphological profiles (EMP) based on principle components of hyperspectral image. Utilize spectral and EMP from two view to enrich knowledge, and integrate the useful information of unlabeled data at the most extent to optimize the classifier. Pick high confident samples to augment training set and retrain the classifier. This process is performed iteratively. The proposed algorithm is tested on AVIRIS Indian Pines. Experimental results show significant improvements in terms of accuracy and kappa coefficient compared with the classification results based on spectral, EMP and the combination of spectral and EMP.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于光谱和扩展形态特征的高光谱图像半监督分类
高维数据与有限训练样本之间的矛盾是高光谱遥感图像分类中的主要问题。如何在有限的标记样本下获得较高的分类精度是一个亟待解决的问题。提出了一种基于光谱和空间信息的高光谱遥感图像半监督分类算法SSP_EMP。基于高光谱图像的主成分,构建扩展形态轮廓(EMP)提取空间信息。利用光谱和EMP从两个角度丰富知识,最大程度地整合未标记数据的有用信息来优化分类器。选择高置信度的样本来增加训练集并重新训练分类器。这个过程是迭代地执行的。该算法在AVIRIS印第安松上进行了测试。实验结果表明,与基于光谱、EMP以及光谱与EMP相结合的分类结果相比,该分类方法在准确率和kappa系数方面均有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hyperspectral and color-infrared imaging from ultralight aircraft: Potential to recognize tree species in urban environments Mapping land covers of brussels capital region using spatially enhanced hyperspectral images Morpho-spectral objects classification by hyperspectral airborne imagery Land-cover monitoring using time-series hyperspectral data via fractional-order darwinian particle swarm optimization segmentation Nonnegative CP decomposition of multiangle hyperspectral data: A case study on CRISM observations of Martian ICY surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1