Deep-learning based framework for sentiment analysis in Urdu language

Maria Masood, F. Azam, Muhammad Waseem Anwar, Jalees Ur Rahman
{"title":"Deep-learning based framework for sentiment analysis in Urdu language","authors":"Maria Masood, F. Azam, Muhammad Waseem Anwar, Jalees Ur Rahman","doi":"10.1109/ICoDT255437.2022.9787451","DOIUrl":null,"url":null,"abstract":"In recent times, Sentiment analysis has become a significant means for framing a successful business and can be very helpful in predicting customer trends to help organizations in their decision-making process. Though many software applications are available in the market for text analysis, one of the major limitations of such applications is that they are developed for rich languages like English, German, Spanish, Arabic, etc. and less popular languages like Urdu, Hindi, Roman Urdu are neglected due to lack of availability of resources. Therefore, this research project will provide an implementation of sentiment analysis in the Urdu language. Firstly, preprocessing is performed and a small-scale manual dictionary of 830 Urdu stem words is introduced for stemming. Then a deep learning-based framework of LSTM is used for Urdu sentiment analysis. Experimental results show high classification accuracy of 86.03% and 0.89 F1 Score with the use of LSTM that captures sequence information effectively to analyze sentiments than the conventional supervised machine learning approaches.","PeriodicalId":291030,"journal":{"name":"2022 2nd International Conference on Digital Futures and Transformative Technologies (ICoDT2)","volume":"252 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Digital Futures and Transformative Technologies (ICoDT2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICoDT255437.2022.9787451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In recent times, Sentiment analysis has become a significant means for framing a successful business and can be very helpful in predicting customer trends to help organizations in their decision-making process. Though many software applications are available in the market for text analysis, one of the major limitations of such applications is that they are developed for rich languages like English, German, Spanish, Arabic, etc. and less popular languages like Urdu, Hindi, Roman Urdu are neglected due to lack of availability of resources. Therefore, this research project will provide an implementation of sentiment analysis in the Urdu language. Firstly, preprocessing is performed and a small-scale manual dictionary of 830 Urdu stem words is introduced for stemming. Then a deep learning-based framework of LSTM is used for Urdu sentiment analysis. Experimental results show high classification accuracy of 86.03% and 0.89 F1 Score with the use of LSTM that captures sequence information effectively to analyze sentiments than the conventional supervised machine learning approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的乌尔都语情感分析框架
最近,情感分析已成为构建成功业务的重要手段,在预测客户趋势以帮助组织决策过程方面非常有帮助。虽然市场上有许多用于文本分析的软件应用程序,但这些应用程序的主要限制之一是它们是为英语、德语、西班牙语、阿拉伯语等丰富的语言开发的,而乌尔都语、印地语、罗马乌尔都语等不太流行的语言由于缺乏可用资源而被忽视。因此,本研究项目将提供乌尔都语情感分析的实现。首先进行预处理,并引入一个包含830个乌尔都语词干词的小型手工词典进行词干提取。然后将基于深度学习的LSTM框架用于乌尔都语情感分析。实验结果表明,与传统的有监督机器学习方法相比,使用有效捕获序列信息的LSTM进行情感分析的分类准确率高达86.03%,F1分数为0.89。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Segmentation of Images Using Deep Learning: A Survey Semantic Keywords Extraction from Paper Abstract in the Domain of Educational Big Data to support Topic Clustering Automatically Categorizing Software Technologies A Theoretical CNN Compression Framework for Resource-Restricted Environments Automatic Detection and classification of Scoliosis from Spine X-rays using Transfer Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1