{"title":"Robust moving object segmentation with two-stage optimization","authors":"Jianwei Ding, Xin Zhao, Kaiqi Huang, T. Tan","doi":"10.1109/ACPR.2011.6166695","DOIUrl":null,"url":null,"abstract":"Inspired by interactive segmentation algorithms, we propose an online and unsupervised technique to extract moving objects from videos captured by stationary cameras. Our method consists of two main optimization steps, from local optimal extraction to global optimal segmentation. In the first stage, reliable foreground and background pixels are extracted from input image by modeling distributions of foreground and background with color and motion cues. These reliable pixels provide hard constraints for the next step of segmentation. Then global optimal segmentation of moving object is implemented by graph cuts in the second stage. Experimental results on several challenging videos demonstrate the effectiveness and robustness of the proposed approach.","PeriodicalId":287232,"journal":{"name":"The First Asian Conference on Pattern Recognition","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The First Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2011.6166695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Inspired by interactive segmentation algorithms, we propose an online and unsupervised technique to extract moving objects from videos captured by stationary cameras. Our method consists of two main optimization steps, from local optimal extraction to global optimal segmentation. In the first stage, reliable foreground and background pixels are extracted from input image by modeling distributions of foreground and background with color and motion cues. These reliable pixels provide hard constraints for the next step of segmentation. Then global optimal segmentation of moving object is implemented by graph cuts in the second stage. Experimental results on several challenging videos demonstrate the effectiveness and robustness of the proposed approach.