NN classifiers: reducing the computational cost of cross-validation by active pattern selection

F. Leisch, K. Hornik, L. Jain
{"title":"NN classifiers: reducing the computational cost of cross-validation by active pattern selection","authors":"F. Leisch, K. Hornik, L. Jain","doi":"10.1109/ANNES.1995.499447","DOIUrl":null,"url":null,"abstract":"We propose a new approach for leave-one-out cross-validation of neural network classifiers called \"cross-validation with active pattern selection\" (CV/APS). In CV/APS, the contribution of the training patterns to backpropagation learning is estimated and this information is used for active selection of CV patterns. On two artificial examples, the computational cost of CV can be reduced to 25% of the normal costs with only small or no errors.","PeriodicalId":123427,"journal":{"name":"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANNES.1995.499447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We propose a new approach for leave-one-out cross-validation of neural network classifiers called "cross-validation with active pattern selection" (CV/APS). In CV/APS, the contribution of the training patterns to backpropagation learning is estimated and this information is used for active selection of CV patterns. On two artificial examples, the computational cost of CV can be reduced to 25% of the normal costs with only small or no errors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经网络分类器:通过主动模式选择减少交叉验证的计算成本
提出了一种新的神经网络分类器留一交叉验证方法,称为“主动模式选择交叉验证”(CV/APS)。在CV/APS中,估计了训练模式对反向传播学习的贡献,并将这些信息用于主动选择CV模式。在两个人工算例中,CV的计算成本可以降低到正常成本的25%,而且误差很小或没有误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bandsaw diagnostics by neurocomputing-two are better than one! Increased reliability by effective use of sensor information: a shop floor application of sensor-aided robotic handling Convergent unlearning algorithm for the Hopfield neural network Neural network approaches to cognitive mapping Integrating vision processing and natural language processing with a clinical application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1