A Fully-Pipelined FPGA Design for Tree-Reweighted Message Passing Algorithm

Wenlai Zhao, H. Fu, Guangwen Yang
{"title":"A Fully-Pipelined FPGA Design for Tree-Reweighted Message Passing Algorithm","authors":"Wenlai Zhao, H. Fu, Guangwen Yang","doi":"10.1109/FCCM.2014.59","DOIUrl":null,"url":null,"abstract":"A Markov random field (MRF) is a set of random variables demonstrating a Markov property in the form of an undirected graph. Maximum a posteriori probability (MAP) inference is a class of methods that seek solutions of problems modeled by MRF. MRF has been a very popular and powerful tool in computer vision problems such as stereo matching and image segmentation [1]. Finding the optimal solution of the MRF MAP problem is an NP-hard problem. Inference algorithms often involve a heavy computation load. Therefore, most related works have focused on improving the performance and efficiency of algorithms. Hardware-based acceleration is one of the most practical solutions.","PeriodicalId":246162,"journal":{"name":"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2014.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A Markov random field (MRF) is a set of random variables demonstrating a Markov property in the form of an undirected graph. Maximum a posteriori probability (MAP) inference is a class of methods that seek solutions of problems modeled by MRF. MRF has been a very popular and powerful tool in computer vision problems such as stereo matching and image segmentation [1]. Finding the optimal solution of the MRF MAP problem is an NP-hard problem. Inference algorithms often involve a heavy computation load. Therefore, most related works have focused on improving the performance and efficiency of algorithms. Hardware-based acceleration is one of the most practical solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
树加权消息传递算法的全流水线FPGA设计
马尔可夫随机场(MRF)是以无向图的形式表现出马尔可夫性质的一组随机变量。最大后验概率(MAP)推理是一类寻求MRF模型问题解的方法。在立体匹配和图像分割等计算机视觉问题中,核磁共振成像已经成为一种非常流行和强大的工具。寻找MRF MAP问题的最优解是一个np困难问题。推理算法通常涉及大量的计算负载。因此,大多数相关工作都集中在提高算法的性能和效率上。基于硬件的加速是最实用的解决方案之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Architectural Approach to Characterizing and Eliminating Sources of Inefficiency in a Soft Processor Design High-Throughput Fixed-Point Object Detection on FPGAs A Hierarchical Memory Architecture with NoC Support for MPSoC on FPGAs System-Level Retiming and Pipelining Harmonica: An FPGA-Based Data Parallel Soft Core
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1