Sentence-Level Dialects Identification in the Greater China Region

Fan Xu, Mingwen Wang, Maoxi Li
{"title":"Sentence-Level Dialects Identification in the Greater China Region","authors":"Fan Xu, Mingwen Wang, Maoxi Li","doi":"10.5121/IJNLC.2016.5602","DOIUrl":null,"url":null,"abstract":"Identifying the different varieties of the same language is more challenging than unrelated languages identification. In this paper, we propose an approach to discriminate language varieties or dialects of Mandarin Chinese for the Mainland China, Hong Kong, Taiwan, Macao, Malaysia and Singapore, a.k.a., the Greater China Region (GCR). When applied to the dialects identification of the GCR, we find that the commonly used character-level or word-level uni-gram feature is not very efficient since there exist several specific problems such as the ambiguity and context-dependent characteristic of words in the dialects of the GCR. To overcome these challenges, we use not only the general features like character-level n-gram, but also many new word-level features, including PMI-based and word alignment-based features. A series of evaluation results on both the news and open-domain dataset from Wikipedia show the effectiveness of the proposed approach.","PeriodicalId":256367,"journal":{"name":"Computational Linguistics & Natural Language Processing eJournal","volume":"40 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Linguistics & Natural Language Processing eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJNLC.2016.5602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Identifying the different varieties of the same language is more challenging than unrelated languages identification. In this paper, we propose an approach to discriminate language varieties or dialects of Mandarin Chinese for the Mainland China, Hong Kong, Taiwan, Macao, Malaysia and Singapore, a.k.a., the Greater China Region (GCR). When applied to the dialects identification of the GCR, we find that the commonly used character-level or word-level uni-gram feature is not very efficient since there exist several specific problems such as the ambiguity and context-dependent characteristic of words in the dialects of the GCR. To overcome these challenges, we use not only the general features like character-level n-gram, but also many new word-level features, including PMI-based and word alignment-based features. A series of evaluation results on both the news and open-domain dataset from Wikipedia show the effectiveness of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大中国地区句子级方言识别
识别同一种语言的不同变体比识别不相关的语言更具挑战性。本文提出了一种区分中国大陆、香港、台湾、澳门、马来西亚和新加坡,即大中华地区(GCR)普通话语言变体或方言的方法。将常用的字符级或词级一元图特征应用于GCR方言识别时,由于GCR方言中存在词的歧义性和上下文依赖性等具体问题,其识别效率不高。为了克服这些挑战,我们不仅使用一般的特征,如字符级n-gram,而且还使用许多新的词级特征,包括基于pmi和基于词对齐的特征。在维基百科的新闻和开放域数据集上的一系列评估结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Digital Storytelling: Computer Based Learning Activity to Enhance Young Learner Vocabulary Corporate ESG News and The Stock Market Neural Discourse Modelling of Conversations FinBERT—A Deep Learning Approach to Extracting Textual Information Implementation on Text Classification Using Bag of Words Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1