Mobility prediction as a time function for mobile networks in 3-D space: A Framework

M. Al-Hattab, Nuha Hamada
{"title":"Mobility prediction as a time function for mobile networks in 3-D space: A Framework","authors":"M. Al-Hattab, Nuha Hamada","doi":"10.1109/ACIT47987.2019.8991022","DOIUrl":null,"url":null,"abstract":"Mobility prediction has attracted increasing interest in recent years, as correct and accurate prediction can lead to efficient data delivery and provide the user with high quality of service. Moreover, it enables the network to plan for future tasks in the suitable time. In this paper, we present a framework for a prediction scheme that predict the future mobility of mobile networks in three-dimensional space using polynomial regression and provide a time-space mapping to produce a time function for the three components of the trajectory for the node","PeriodicalId":314091,"journal":{"name":"2019 International Arab Conference on Information Technology (ACIT)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Arab Conference on Information Technology (ACIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIT47987.2019.8991022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Mobility prediction has attracted increasing interest in recent years, as correct and accurate prediction can lead to efficient data delivery and provide the user with high quality of service. Moreover, it enables the network to plan for future tasks in the suitable time. In this paper, we present a framework for a prediction scheme that predict the future mobility of mobile networks in three-dimensional space using polynomial regression and provide a time-space mapping to produce a time function for the three components of the trajectory for the node
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
移动网络在三维空间中的时间函数预测:一个框架
近年来,移动预测引起了越来越多的关注,因为正确和准确的预测可以导致高效的数据传递并为用户提供高质量的服务。此外,它使网络能够在适当的时间规划未来的任务。在本文中,我们提出了一个预测方案框架,该方案使用多项式回归来预测移动网络在三维空间中的未来移动性,并提供了一个时空映射来为节点的轨迹的三个组成部分生成时间函数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Loan Default Prediction Model Improvement through Comprehensive Preprocessing and Features Selection Privacy Preserving of Shared Data in Deep Learning Does Social Media Affects Users’ Well-Being [Copyright notice] Image Caption Generation Using A Deep Architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1