Fiber sensor identification based on incoherent Rayleigh backscatter measurements in the frequency domain

Max Koeppel, R. Engelbrecht, S. Werzinger, B. Schmauss
{"title":"Fiber sensor identification based on incoherent Rayleigh backscatter measurements in the frequency domain","authors":"Max Koeppel, R. Engelbrecht, S. Werzinger, B. Schmauss","doi":"10.1117/12.2263459","DOIUrl":null,"url":null,"abstract":"In this work, a fiber identification method based on incoherent optical frequency domain reflectometry (lOFDR) measurements is introduced. The proposed method uses the characteristic interference pattern of IOFDR Rayleigh backscatter measurements with a broadband light source to unambiguously recognize different initially scanned fiber segments. The recognition is achieved by crosscorrelating the spatially resolved Rayleigh backscatter profile of the fiber segment under test with a initially measured and stored backscatter profile. This profile was found to be relatively insensitive to temperature changes. It is shown that identification is possible even if the fiber segment in question is installed subsequent to 300 m of lead fiber.","PeriodicalId":198716,"journal":{"name":"2017 25th Optical Fiber Sensors Conference (OFS)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th Optical Fiber Sensors Conference (OFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2263459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this work, a fiber identification method based on incoherent optical frequency domain reflectometry (lOFDR) measurements is introduced. The proposed method uses the characteristic interference pattern of IOFDR Rayleigh backscatter measurements with a broadband light source to unambiguously recognize different initially scanned fiber segments. The recognition is achieved by crosscorrelating the spatially resolved Rayleigh backscatter profile of the fiber segment under test with a initially measured and stored backscatter profile. This profile was found to be relatively insensitive to temperature changes. It is shown that identification is possible even if the fiber segment in question is installed subsequent to 300 m of lead fiber.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于频域非相干瑞利背散射测量的光纤传感器识别
本文介绍了一种基于非相干光频域反射(lOFDR)测量的光纤识别方法。该方法利用宽带光源下IOFDR瑞利后向散射测量的特征干涉图来明确识别不同的初始扫描光纤段。识别是通过将待测光纤段的空间分辨瑞利后向散射剖面与初始测量和存储的后向散射剖面相互关联来实现的。发现该剖面对温度变化相对不敏感。结果表明,即使有问题的光纤段安装在300米的导联光纤之后,识别也是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-parameter measurements using optical fibre long period gratings for indoor air quality monitoring Impact of the laser phase noise on chirped-pulse phase-sensitive OTDR Strain and temperature measurement using a 9.5-m continuous chirped fiber Bragg grating with millimeter resolution Fiber optic nickel ion sensor based on direct ligand immobilization Eliminating the non-local effect in frequency-fixed probe wave based BOTDA sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1