Production, Optimization and Partial Characterization of Alkaline Protease from Bacillus subtilis spp. subtilis NRRL B-3384 and B-3387

Cengiz Akkale
{"title":"Production, Optimization and Partial Characterization of Alkaline Protease from Bacillus subtilis spp. subtilis NRRL B-3384 and B-3387","authors":"Cengiz Akkale","doi":"10.17350/hjse19030000300","DOIUrl":null,"url":null,"abstract":"Bacillus subtilis has been a reliable platform for the expression of extracellular proteases for several decades. Although a majority of Bacillus subtilis subspecies express proteases, the amount of secreted enzyme varies depending on the strain and environmental conditions used. Here, two Bacillus subtilis spp. subtilis strains, NRRL B-3384 and NRRL B-3387, from the ARS Culture collection (NRRL), were compared for secreted protease activity. The highest activity was found in strain NRRL B-3384, and proteolysis occurred at temperatures as high as 80°C and across a broad range of pH, with maximum activity at pH 9.0 and 60°C indicating the presence of a thermostable alkaline protease. To our knowledge, this is the first study to evaluate protease production in Bacillus subtilis spp. subtilis strains NRRL B-3384 and B3387 and suggests that NRRL B-3384 may have utility in the production of enzymes for industrial use.","PeriodicalId":285705,"journal":{"name":"Hittite Journal of Science and Engineering","volume":"8 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hittite Journal of Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17350/hjse19030000300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bacillus subtilis has been a reliable platform for the expression of extracellular proteases for several decades. Although a majority of Bacillus subtilis subspecies express proteases, the amount of secreted enzyme varies depending on the strain and environmental conditions used. Here, two Bacillus subtilis spp. subtilis strains, NRRL B-3384 and NRRL B-3387, from the ARS Culture collection (NRRL), were compared for secreted protease activity. The highest activity was found in strain NRRL B-3384, and proteolysis occurred at temperatures as high as 80°C and across a broad range of pH, with maximum activity at pH 9.0 and 60°C indicating the presence of a thermostable alkaline protease. To our knowledge, this is the first study to evaluate protease production in Bacillus subtilis spp. subtilis strains NRRL B-3384 and B3387 and suggests that NRRL B-3384 may have utility in the production of enzymes for industrial use.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
枯草芽孢杆菌B-3384和B-3387碱性蛋白酶的制备、优化及部分特性研究
几十年来,枯草芽孢杆菌一直是细胞外蛋白酶表达的可靠平台。虽然大多数枯草芽孢杆菌亚种表达蛋白酶,但分泌酶的量因菌株和使用的环境条件而异。本研究比较了ARS Culture collection (NRRL)中2株枯草芽孢杆菌(Bacillus subtilis spp. subtilis) NRRL B-3384和NRRL B-3387的蛋白酶活性。菌株NRRL B-3384的酶解活性最高,酶解温度可达80℃,pH范围广,在pH 9.0和60℃时酶解活性最高,表明该菌株为耐热碱性蛋白酶。据我们所知,这是第一次对枯草芽孢杆菌菌株NRRL B-3384和B3387的蛋白酶生产进行评估,并表明NRRL B-3384可能在工业酶生产中具有实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Research: Investigation of Financial Applications with Blockchain Technology COVID-19 Diagnosis from Blood Gas Using Multivariate Linear Regression A Fabrication Method for Memristors with Graphene Top Electrodes and their Characterization Size Dependent Compressive Strength of FIB Machined Single Crystal Manganese Pillars Performance Comparison of Waste Cooking Oil on Coal Slime Flotation with Sunflower Oil and Gas Oil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1