Efficient Bayesian sampling inspection for industrial processes based on transformed spatio-temporal data

J. Little, M. Goldstein, P. Jonathan
{"title":"Efficient Bayesian sampling inspection for industrial processes based on transformed spatio-temporal data","authors":"J. Little, M. Goldstein, P. Jonathan","doi":"10.1191/1471082X04st081oa","DOIUrl":null,"url":null,"abstract":"Efficient inspection and maintenance of complex industrial systems, subject to degradation effects such as corrosion, are important for safety and economic reasons. With appropriate statistical modelling, the utilization of inspection resources and the quality of inferences can be greatly improved. We develop a suitable Bayesian spatio-temporal dynamic linear model for problems such as wall thickness monitoring. We are concerned with problems where the inspection method used collects transformed data, for example minimum regional remaining wall thicknesses. We describe how the model may be used to derive efficient inspection schedules by identifying when, where and how much inspection should be made in the future.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082X04st081oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Efficient inspection and maintenance of complex industrial systems, subject to degradation effects such as corrosion, are important for safety and economic reasons. With appropriate statistical modelling, the utilization of inspection resources and the quality of inferences can be greatly improved. We develop a suitable Bayesian spatio-temporal dynamic linear model for problems such as wall thickness monitoring. We are concerned with problems where the inspection method used collects transformed data, for example minimum regional remaining wall thicknesses. We describe how the model may be used to derive efficient inspection schedules by identifying when, where and how much inspection should be made in the future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于转换时空数据的工业过程高效贝叶斯抽样检验
由于安全和经济原因,对容易受到腐蚀等退化影响的复杂工业系统进行有效检查和维护是很重要的。通过适当的统计建模,可以大大提高检测资源的利用率和推断的质量。我们开发了一个适合于壁厚监测等问题的贝叶斯时空动态线性模型。我们关注的问题是使用的检测方法收集转换后的数据,例如最小区域剩余壁厚。我们描述了该模型如何通过确定未来应该在何时、何地以及进行多少检查来获得有效的检查计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of auxiliary data in semi-parametric spatial regression with nonignorable missing responses Bayesian modeling for genetic association in case-control studies: accounting for unknown population substructure GLMM approach to study the spatial and temporal evolution of spikes in the small intestine Comparing nonparametric surfaces Analyzing the emergence times of permanent teeth: an example of modeling the covariance matrix with interval-censored data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1