{"title":"Quoted staged rewriting: a practical approach to library-defined optimizations","authors":"L. Parreaux, A. Shaikhha, Christoph E. Koch","doi":"10.1145/3136040.3136043","DOIUrl":null,"url":null,"abstract":"Staging has proved a successful technique for programmatically removing code abstractions, thereby allowing for faster program execution while retaining a high-level interface for the programmer. Unfortunately, techniques based on staging suffer from a number of problems — ranging from practicalities to fundamental limitations — which have prevented their widespread adoption. We introduce Quoted Staged Rewriting (QSR), an approach that uses type-safe, pattern matching-enabled quasiquotes to define optimizations. The approach is “staged” in two ways: first, rewrite rules can execute arbitrary code during pattern matching and code reconstruction, leveraging the power and flexibility of staging; second, library designers can orchestrate the application of successive rewriting phases (stages). The advantages of using quasiquote-based rewriting are that library designers never have to deal directly with the intermediate representation (IR), and that it allows for non-intrusive optimizations — in contrast with staging, it is not necessary to adapt the entire library and user programs to accommodate optimizations. We show how Squid, a Scala macro-based framework, enables QSR and renders library-defined optimizations more practical than ever before: library designers write domain-specific optimizers that users invoke transparently on delimited portions of their code base. As a motivating example we describe an implementation of stream fusion (a well-known deforestation technique) that is both simpler and more powerful than the state of the art, and can readily be used by Scala programmers with no knowledge of metaprogramming.","PeriodicalId":398999,"journal":{"name":"Proceedings of the 16th ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3136040.3136043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Staging has proved a successful technique for programmatically removing code abstractions, thereby allowing for faster program execution while retaining a high-level interface for the programmer. Unfortunately, techniques based on staging suffer from a number of problems — ranging from practicalities to fundamental limitations — which have prevented their widespread adoption. We introduce Quoted Staged Rewriting (QSR), an approach that uses type-safe, pattern matching-enabled quasiquotes to define optimizations. The approach is “staged” in two ways: first, rewrite rules can execute arbitrary code during pattern matching and code reconstruction, leveraging the power and flexibility of staging; second, library designers can orchestrate the application of successive rewriting phases (stages). The advantages of using quasiquote-based rewriting are that library designers never have to deal directly with the intermediate representation (IR), and that it allows for non-intrusive optimizations — in contrast with staging, it is not necessary to adapt the entire library and user programs to accommodate optimizations. We show how Squid, a Scala macro-based framework, enables QSR and renders library-defined optimizations more practical than ever before: library designers write domain-specific optimizers that users invoke transparently on delimited portions of their code base. As a motivating example we describe an implementation of stream fusion (a well-known deforestation technique) that is both simpler and more powerful than the state of the art, and can readily be used by Scala programmers with no knowledge of metaprogramming.