Rapid 3D Seismic Source Inversion Using Windows Azure and Amazon EC2

Vedaprakash Subramanian, Hongyi Ma, Liqiang Wang, En-Jui Lee, Po Chen
{"title":"Rapid 3D Seismic Source Inversion Using Windows Azure and Amazon EC2","authors":"Vedaprakash Subramanian, Hongyi Ma, Liqiang Wang, En-Jui Lee, Po Chen","doi":"10.1109/SERVICES.2011.90","DOIUrl":null,"url":null,"abstract":"With its rapid development, cloud computing has been increasingly adopted by scientists for large-scale scientific computation. Compared to the traditional computing platforms such as cluster and supercomputer, cloud computing is more elastic in the support of real-time computation and more powerful in the management of large-scale datasets. This paper presents our experience on designing and implementing seismic source inversion on both cluster (specifically, MPI-based) and cloud computing (specifically, Amazon EC2 and Microsoft Windows Azure). Our experiment shows that applying cloud computing to seismic source inversion is feasible and has its advantages. In addition, we notice that both cluster and Amazon EC2 have obviously better performance than Windows Azure. Cloud computing is suited for real-time processing scientific applications but it (especially Azure) does not work well for tightly-coupled applications.","PeriodicalId":429726,"journal":{"name":"2011 IEEE World Congress on Services","volume":"5 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE World Congress on Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERVICES.2011.90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

With its rapid development, cloud computing has been increasingly adopted by scientists for large-scale scientific computation. Compared to the traditional computing platforms such as cluster and supercomputer, cloud computing is more elastic in the support of real-time computation and more powerful in the management of large-scale datasets. This paper presents our experience on designing and implementing seismic source inversion on both cluster (specifically, MPI-based) and cloud computing (specifically, Amazon EC2 and Microsoft Windows Azure). Our experiment shows that applying cloud computing to seismic source inversion is feasible and has its advantages. In addition, we notice that both cluster and Amazon EC2 have obviously better performance than Windows Azure. Cloud computing is suited for real-time processing scientific applications but it (especially Azure) does not work well for tightly-coupled applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用Windows Azure和Amazon EC2快速三维震源反演
随着云计算的快速发展,越来越多的科学家采用云计算进行大规模的科学计算。与集群、超级计算机等传统计算平台相比,云计算在支持实时计算方面更具弹性,在管理大规模数据集方面更强大。本文介绍了我们在集群(特别是基于mpi的)和云计算(特别是Amazon EC2和Microsoft Windows Azure)上设计和实现震源反演的经验。实验表明,将云计算应用于震源反演是可行的,具有一定的优势。此外,我们注意到集群和Amazon EC2的性能都明显优于Windows Azure。云计算适合于实时处理科学应用程序,但它(尤其是Azure)不适用于紧密耦合的应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reputation-Based Web Service Selection for Composition SSC4Cloud Tooling: An Integrated Environment for the Development of Business Processes with Security Requirements in the Cloud Simplifying Web Service Discovery & Validating Service Composition A Survey of Cloud Storage Facilities Externalizing the Autopoietic Part of Software to Achieve Self-Adaptability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1