Bag-of-features HMMs for segmentation-free Bangla word spotting

MOCR '13 Pub Date : 2013-08-24 DOI:10.1145/2505377.2505384
Leonard Rothacker, G. Fink, P. Banerjee, U. Bhattacharya, B. Chaudhuri
{"title":"Bag-of-features HMMs for segmentation-free Bangla word spotting","authors":"Leonard Rothacker, G. Fink, P. Banerjee, U. Bhattacharya, B. Chaudhuri","doi":"10.1145/2505377.2505384","DOIUrl":null,"url":null,"abstract":"In this paper we present how Bag-of-Features Hidden Markov Models can be applied to printed Bangla word spotting. These statistical models allow for an easy adaption to different problem domains. This is possible due to the integration of automatically estimated visual appearance features and Hidden Markov Models for spatial sequential modeling. In our evaluation we are able to report high retrieval scores on a new printed Bangla dataset. Furthermore, we outperform state-of-the-art results on the well-known George Washington word spotting benchmark. Both results have been achieved using an almost identical parametric method configuration.","PeriodicalId":288465,"journal":{"name":"MOCR '13","volume":"325 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MOCR '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505377.2505384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this paper we present how Bag-of-Features Hidden Markov Models can be applied to printed Bangla word spotting. These statistical models allow for an easy adaption to different problem domains. This is possible due to the integration of automatically estimated visual appearance features and Hidden Markov Models for spatial sequential modeling. In our evaluation we are able to report high retrieval scores on a new printed Bangla dataset. Furthermore, we outperform state-of-the-art results on the well-known George Washington word spotting benchmark. Both results have been achieved using an almost identical parametric method configuration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
特征袋hmm用于无分词的孟加拉语单词识别
在本文中,我们介绍了如何将特征袋隐马尔可夫模型应用于印刷孟加拉语单词识别。这些统计模型可以很容易地适应不同的问题领域。由于集成了自动估计的视觉外观特征和用于空间序列建模的隐马尔可夫模型,这是可能的。在我们的评估中,我们能够在新打印的孟加拉语数据集上报告高检索分数。此外,我们在著名的乔治·华盛顿单词识别基准上的表现优于最先进的结果。这两个结果都是使用几乎相同的参数方法配置实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Can we build language-independent OCR using LSTM networks? Recognition of offline handwritten numerals using an ensemble of MLPs combined by Adaboost Word level script recognition for Uighur document mixed with English script An approach for Bangla and Devanagari video text recognition HMM-based script identification for OCR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1