Ground strike point properties derived from observations of the European Lightning Location System EUCLID

D. Poelman, H. Kohlmann, W. Schulz, S. Pedeboy, Lukas Schwalt
{"title":"Ground strike point properties derived from observations of the European Lightning Location System EUCLID","authors":"D. Poelman, H. Kohlmann, W. Schulz, S. Pedeboy, Lukas Schwalt","doi":"10.1109/APL57308.2023.10182055","DOIUrl":null,"url":null,"abstract":"In order to evaluate the lightning risk to a particular structure, it is common practice to follow the guidelines set out in IEC 62305-2, i.e., the reference standard for lightning risk calculation. Amongst the various components that influence the total risk, the flash density is a key parameter. However, flashes have on average more than one ground termination point. This study seeks to ascertain whether existing ground strike point (GSP) algorithms estimate correctly the actual observed number of GSPs per flash based on observations made by high-speed cameras. In addition, lightning data as observed by the European Cooperation for Lightning Detection (EUCLID) network are used in combination with a particular GSP algorithm to retrieve the temporal behavior of GSPs in two topographically different regions in Europe, i.e., Austria and Belgium, over a ten-year period from 2012 to 2021. We find that although most GSP algorithms over-or underestimate to some extent the number of GSPs per flash, this number is fairly close to the observed value as derived from the ground-truth observations. Furthermore, it is found that the average number of GSPs per flash is highest during the summer months. Finally, a diurnal trend is visible where the number of GSPs per flash is lowest between 12 and 18 UTC (Universal Time Coordinated).","PeriodicalId":371726,"journal":{"name":"2023 12th Asia-Pacific International Conference on Lightning (APL)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 12th Asia-Pacific International Conference on Lightning (APL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APL57308.2023.10182055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to evaluate the lightning risk to a particular structure, it is common practice to follow the guidelines set out in IEC 62305-2, i.e., the reference standard for lightning risk calculation. Amongst the various components that influence the total risk, the flash density is a key parameter. However, flashes have on average more than one ground termination point. This study seeks to ascertain whether existing ground strike point (GSP) algorithms estimate correctly the actual observed number of GSPs per flash based on observations made by high-speed cameras. In addition, lightning data as observed by the European Cooperation for Lightning Detection (EUCLID) network are used in combination with a particular GSP algorithm to retrieve the temporal behavior of GSPs in two topographically different regions in Europe, i.e., Austria and Belgium, over a ten-year period from 2012 to 2021. We find that although most GSP algorithms over-or underestimate to some extent the number of GSPs per flash, this number is fairly close to the observed value as derived from the ground-truth observations. Furthermore, it is found that the average number of GSPs per flash is highest during the summer months. Finally, a diurnal trend is visible where the number of GSPs per flash is lowest between 12 and 18 UTC (Universal Time Coordinated).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
欧洲闪电定位系统EUCLID观测所得的地面打击点特性
为了评估特定结构的雷电风险,通常的做法是遵循IEC 62305-2中规定的指导方针,即雷电风险计算的参考标准。在影响总风险的各种因素中,闪光密度是一个关键参数。然而,闪光平均有一个以上的地面终止点。本研究旨在确定现有的地面打击点(GSP)算法是否正确地估计了基于高速摄像机观测到的每次闪光的实际GSP数量。此外,欧洲闪电探测合作(EUCLID)网络观测到的闪电数据与特定的GSP算法相结合,检索了2012年至2021年欧洲两个地形不同地区(即奥地利和比利时)GSP的时间行为。我们发现,尽管大多数GSP算法在一定程度上高估或低估了每次闪光的GSP数量,但这个数字相当接近于由真值观测得出的观测值。此外,还发现在夏季,每闪的平均gsp数最高。最后,在12到18 UTC(世界协调时间)之间,每次闪光的gsp数是最低的,这是一个可见的日趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of cost-effective lightning protection measures for underprivileged communities Preliminary Results of Corona Discharge Current Measurements in the Early Formation of Lightning on Tower Performance of Bentonite and Peat Moss Mixtures as Grounding Enhancement Materials Thunderstorm Prediction Model Using SMOTE Sampling and Machine Learning Approach A Year of Global Lightning Deaths and Injuries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1