Pixel bar charts: a new technique for visualizing large multi-attribute data sets without aggregation

D. Keim, M. Hao, J. Ladisch, M. Hsu, U. Dayal
{"title":"Pixel bar charts: a new technique for visualizing large multi-attribute data sets without aggregation","authors":"D. Keim, M. Hao, J. Ladisch, M. Hsu, U. Dayal","doi":"10.1109/INFVIS.2001.963288","DOIUrl":null,"url":null,"abstract":"Simple presentation graphics are intuitive and easy-to-use, but show only highly aggregated data and present only a very limited number of data values (as in the case of bar charts). In addition, these graphics may have a high degree of overlap which may occlude a significant portion of the data values (as in the case of the x-y plots). In this paper, we therefore propose a generalization of traditional bar charts and x-y-plots which allows the visualization of large amounts of data. The basic idea is to use the pixels within the bars to present the detailed information of the data records. Our so-called pixel bar charts retain the intuitiveness of traditional bar charts while allowing very large data sets to be visualized in an effective way. We show that, for an effective pixel placement, we have to solve complex optimization problems, and present an algorithm which efficiently solves the problem. Our application using real-world e-commerce data shows the wide applicability and usefulness of our new idea.","PeriodicalId":131263,"journal":{"name":"IEEE Symposium on Information Visualization, 2001. INFOVIS 2001.","volume":"37 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Symposium on Information Visualization, 2001. INFOVIS 2001.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFVIS.2001.963288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

Simple presentation graphics are intuitive and easy-to-use, but show only highly aggregated data and present only a very limited number of data values (as in the case of bar charts). In addition, these graphics may have a high degree of overlap which may occlude a significant portion of the data values (as in the case of the x-y plots). In this paper, we therefore propose a generalization of traditional bar charts and x-y-plots which allows the visualization of large amounts of data. The basic idea is to use the pixels within the bars to present the detailed information of the data records. Our so-called pixel bar charts retain the intuitiveness of traditional bar charts while allowing very large data sets to be visualized in an effective way. We show that, for an effective pixel placement, we have to solve complex optimization problems, and present an algorithm which efficiently solves the problem. Our application using real-world e-commerce data shows the wide applicability and usefulness of our new idea.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
像素柱状图:一种新的技术,用于可视化大型多属性数据集,而不需要聚合
简单的表示图形直观且易于使用,但只显示高度聚合的数据,并且只显示非常有限的数据值(如条形图)。此外,这些图形可能有高度的重叠,这可能会遮挡很大一部分数据值(如x-y图的情况)。因此,在本文中,我们提出了一种传统条形图和x-y图的概括,它允许大量数据的可视化。其基本思想是使用条形内的像素来表示数据记录的详细信息。我们所谓的像素条形图保留了传统条形图的直观性,同时允许非常大的数据集以有效的方式可视化。我们表明,为了有效的像素放置,我们必须解决复杂的优化问题,并提出了一种有效解决问题的算法。我们使用真实电子商务数据的应用程序显示了我们的新想法的广泛适用性和有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
To draw a tree 2D vs 3D, implications on spatial memory Ordered treemap layouts Visualizing time-series on spirals Change blindness in information visualization: a case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1