Angle Classifier for Registration of MRI and CT Brain Images using Deep Learning

L. Chandrashekar, A. Sreedevi, Chandan M Shekar, M. Raj, N. Kumar, R. Vinay
{"title":"Angle Classifier for Registration of MRI and CT Brain Images using Deep Learning","authors":"L. Chandrashekar, A. Sreedevi, Chandan M Shekar, M. Raj, N. Kumar, R. Vinay","doi":"10.1109/ICRAIE51050.2020.9358365","DOIUrl":null,"url":null,"abstract":"Image registration in field of medical images is highly recommended for detection brain tumor related diseases. With Deep Learning, features are learnt automatically and it allows the system to quickly iterate complex functions. The paper proposes an image registration methodology for Magnetic Resonance Imaging and Computed Tomography using Deep learning architecture - Convolutional Neural Network. This can identify the orientation of the images. The paper highlights the choice of activation functions for the classifier, trained with 4000 CT and MRI images grouped in 10 classes with angle orientation of 0 - 20 degrees. Experiments indicate the highest accuracy of 95.4 % with clipped Relu activation function, for the proposed architecture trained with 55 epochs. ADAM optimizer provides the highest validation accuracy of 91.28%. A confusion matrix is generated to indicate the classified and misclassified images along with precision and recall values.","PeriodicalId":149717,"journal":{"name":"2020 5th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAIE51050.2020.9358365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image registration in field of medical images is highly recommended for detection brain tumor related diseases. With Deep Learning, features are learnt automatically and it allows the system to quickly iterate complex functions. The paper proposes an image registration methodology for Magnetic Resonance Imaging and Computed Tomography using Deep learning architecture - Convolutional Neural Network. This can identify the orientation of the images. The paper highlights the choice of activation functions for the classifier, trained with 4000 CT and MRI images grouped in 10 classes with angle orientation of 0 - 20 degrees. Experiments indicate the highest accuracy of 95.4 % with clipped Relu activation function, for the proposed architecture trained with 55 epochs. ADAM optimizer provides the highest validation accuracy of 91.28%. A confusion matrix is generated to indicate the classified and misclassified images along with precision and recall values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的MRI和CT脑图像配准角度分类器
医学图像领域的图像配准在脑肿瘤相关疾病的检测中具有重要的应用价值。通过深度学习,特征是自动学习的,它允许系统快速迭代复杂的函数。本文提出了一种基于深度学习架构——卷积神经网络的磁共振成像和计算机断层扫描图像配准方法。这可以识别图像的方向。本文重点介绍了分类器激活函数的选择,该分类器使用4000张CT和MRI图像进行训练,这些图像分为10类,角度方向为0 - 20度。实验结果表明,采用截断的Relu激活函数对该结构进行55个epoch的训练,准确率达到95.4%。ADAM优化器的验证准确率最高,为91.28%。生成混淆矩阵来指示分类和误分类图像以及精度和召回值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
COVID19: Impact on Indian Power Sector Smart Logic Built in Self-Test in SOC 2020 5th IEEE International Conference (Virtual Mode) on Recent Advances and Innovations in Engineering (IEEE - ICRAIE-2020) Hybrid Ant Colony Optimization Algorithm for Multiple Knapsack Problem Outage Probability Evaluation for Relay-Based DF Cooperative Diversity Systems with Multipath Fading Channels and Non-Identical Interferers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1