Semi supervised ocean mesoscale vortex detection method based on feature invariance

Haiyan Liu, Bo Qin, Y. Liu
{"title":"Semi supervised ocean mesoscale vortex detection method based on feature invariance","authors":"Haiyan Liu, Bo Qin, Y. Liu","doi":"10.1145/3556677.3556682","DOIUrl":null,"url":null,"abstract":"Ocean mesoscale eddy detection is an important hotspot of Marine scientific research. Over the last few years, with the development of machine learning research, eddy detection methods based on machine learning have been applied in various fields. However, the traditional scroll detection algorithm has weak generalization ability and low detection accuracy, and the fully supervised scroll detection algorithm needs a large amount of marker data, which is costly and has poor readability. In this paper, a new semi-supervised ocean mesoscale eddy detection method based on feature invariance is proposed. The fully supervised loss calculation model is optimized to solve the problem of serious imbalance of positive and negative samples in loss calculation, so as to achieve the purpose of training the model. In addition, based on the feature invariance, an interpolation consistency calculation method based on flipped image and original image is proposed, which is combined with the consistency method algorithm put forward in CSD networks to increase the precision of detection. Compared with SSD and ISD networks, the proposed meso-scale eddy detection algorithm achieves better performance, with the AP value increasing by 1.7% and 1.1%, respectively.","PeriodicalId":350340,"journal":{"name":"Proceedings of the 2022 6th International Conference on Deep Learning Technologies","volume":"55 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Deep Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3556677.3556682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ocean mesoscale eddy detection is an important hotspot of Marine scientific research. Over the last few years, with the development of machine learning research, eddy detection methods based on machine learning have been applied in various fields. However, the traditional scroll detection algorithm has weak generalization ability and low detection accuracy, and the fully supervised scroll detection algorithm needs a large amount of marker data, which is costly and has poor readability. In this paper, a new semi-supervised ocean mesoscale eddy detection method based on feature invariance is proposed. The fully supervised loss calculation model is optimized to solve the problem of serious imbalance of positive and negative samples in loss calculation, so as to achieve the purpose of training the model. In addition, based on the feature invariance, an interpolation consistency calculation method based on flipped image and original image is proposed, which is combined with the consistency method algorithm put forward in CSD networks to increase the precision of detection. Compared with SSD and ISD networks, the proposed meso-scale eddy detection algorithm achieves better performance, with the AP value increasing by 1.7% and 1.1%, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于特征不变性的半监督海洋中尺度涡旋检测方法
海洋中尺度涡旋探测是海洋科学研究的一个重要热点。近年来,随着机器学习研究的发展,基于机器学习的涡流检测方法在各个领域得到了应用。然而,传统的滚动检测算法泛化能力较弱,检测精度较低,且全监督滚动检测算法需要大量的标记数据,成本高,可读性差。提出了一种基于特征不变性的半监督海洋中尺度涡旋检测方法。对全监督损失计算模型进行优化,解决损失计算中正负样本严重失衡的问题,从而达到训练模型的目的。此外,基于特征不变性,提出了一种基于翻转图像与原始图像的插值一致性计算方法,并与CSD网络中提出的一致性方法算法相结合,提高了检测精度。与SSD和ISD网络相比,本文提出的中尺度涡流检测算法性能更好,AP值分别提高1.7%和1.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Fake News on Social Media by CSIBERT Automated Recognition of Oracle Bone Inscriptions Using Deep Learning and Data Augmentation Weather Recognition Based on Still Images Using Deep Learning Neural Network with Resnet-15 Ultrasonic scanning image defect detection of plastic packaging components based on FCOS Household Load Identification Based on Multi-label and Convolutional Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1