Adaptive e-learning interactions using dynamic clustering of learners’ characteristics

C. Troussas, Akrivi Krouska, M. Virvou
{"title":"Adaptive e-learning interactions using dynamic clustering of learners’ characteristics","authors":"C. Troussas, Akrivi Krouska, M. Virvou","doi":"10.1109/IISA.2019.8900722","DOIUrl":null,"url":null,"abstract":"The proliferation of Internet technologies has rendered education available to a vast majority of people, irrespective of their place, giving birth to e-learning. As such, learners, sharing different characteristics, have access to the learning material. In the light of recent developments, educational software should offer a student-centered learning experience. In view of the above, this paper presents artificial intelligence dynamic clustering of learners’ characteristics for preserving the learning pace of each student. As a testbed of our research, we have designed and implemented an adaptive system for providing individualized tutoring of mathematics to elementary school students. Dynamic clustering takes as input several students’ characteristics, namely pre-existing knowledge, current and previous knowledge level, etc., in order to construct homogeneous student clusters. Through dynamic clustering, the system provides individualized hints to students for improving knowledge acquisition, recommendation for group collaboration, domain knowledge delivery and trophies. The system was evaluated using an established framework and the results show that its incorporated intelligent techniques can offer individualized and adaptive learning while retaining a high level of pedagogical affordance.","PeriodicalId":371385,"journal":{"name":"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA.2019.8900722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The proliferation of Internet technologies has rendered education available to a vast majority of people, irrespective of their place, giving birth to e-learning. As such, learners, sharing different characteristics, have access to the learning material. In the light of recent developments, educational software should offer a student-centered learning experience. In view of the above, this paper presents artificial intelligence dynamic clustering of learners’ characteristics for preserving the learning pace of each student. As a testbed of our research, we have designed and implemented an adaptive system for providing individualized tutoring of mathematics to elementary school students. Dynamic clustering takes as input several students’ characteristics, namely pre-existing knowledge, current and previous knowledge level, etc., in order to construct homogeneous student clusters. Through dynamic clustering, the system provides individualized hints to students for improving knowledge acquisition, recommendation for group collaboration, domain knowledge delivery and trophies. The system was evaluated using an established framework and the results show that its incorporated intelligent techniques can offer individualized and adaptive learning while retaining a high level of pedagogical affordance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于学习者特征动态聚类的自适应电子学习交互
互联网技术的扩散使得绝大多数人,无论身在何处,都能接受教育,从而催生了电子学习。这样,具有不同特点的学习者就可以接触到学习材料。根据最近的发展,教育软件应该提供以学生为中心的学习体验。鉴于此,本文提出了对学习者特征进行人工智能动态聚类,以保持每个学生的学习速度。作为研究的试验台,我们设计并实现了一个针对小学生进行个性化数学辅导的自适应系统。动态聚类以学生的几个特征作为输入,即已有知识、现在和以前的知识水平等,以构建同质的学生聚类。系统通过动态聚类,为学生提供个性化的知识获取提示、小组协作推荐、领域知识传递和奖杯。使用已建立的框架对该系统进行了评估,结果表明其集成的智能技术可以提供个性化和适应性学习,同时保持高水平的教学辅助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A NoSQL Approach for Aspect Mining of Cultural Heritage Streaming Data Advancing Adult Online Education through a SN-Learning Environment Smart educational games and Consent under the scope of General Data Protection Regulation Timetable Scheduling Using a Hybrid Particle Swarm Optimization with Local Search Approach Data Mining for Smart Cities: Predicting Electricity Consumption by Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1