Improving genetic classifiers with a boosting algorithm

B. Liu, Bob McKay, H. Abbass
{"title":"Improving genetic classifiers with a boosting algorithm","authors":"B. Liu, Bob McKay, H. Abbass","doi":"10.1109/CEC.2003.1299415","DOIUrl":null,"url":null,"abstract":"We present a boosting genetic algorithm for classification rule discovery. The method is based on the iterative rule learning approach to genetic classifiers. The boosting mechanism increases the weight of those training instances that are not classified correctly by the new rules, so that in the next iteration the algorithm focuses the search on those rules that capture the misclassified or uncovered instances. We show that the boosted genetic classifier has higher accuracy for prediction, or from an alternative and perhaps more important perspective, uses less computational resources for similar accuracy, than the original genetic classifier.","PeriodicalId":416243,"journal":{"name":"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.","volume":"356 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2003.1299415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

We present a boosting genetic algorithm for classification rule discovery. The method is based on the iterative rule learning approach to genetic classifiers. The boosting mechanism increases the weight of those training instances that are not classified correctly by the new rules, so that in the next iteration the algorithm focuses the search on those rules that capture the misclassified or uncovered instances. We show that the boosted genetic classifier has higher accuracy for prediction, or from an alternative and perhaps more important perspective, uses less computational resources for similar accuracy, than the original genetic classifier.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用增强算法改进遗传分类器
提出了一种用于分类规则发现的增强遗传算法。该方法基于遗传分类器的迭代规则学习方法。增强机制增加了那些未被新规则正确分类的训练实例的权重,以便在下一次迭代中算法将搜索重点放在那些捕获错误分类或未发现实例的规则上。我们表明,增强的遗传分类器在预测方面具有更高的准确性,或者从另一个更重要的角度来看,与原始遗传分类器相比,使用更少的计算资源来获得相似的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Searching oligo sets of human chromosome 12 using evolutionary strategies A nonlinear control system design based on HJB/HJI/FBI equations via differential genetic programming approach Particle swarm optimizers for Pareto optimization with enhanced archiving techniques Epigenetic programming: an approach of embedding epigenetic learning via modification of histones in genetic programming A new particle swarm optimiser for linearly constrained optimisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1