Biological Sequence Prediction using General Fuzzy Automata

M. Doostfatemeh, S. C. Kremer
{"title":"Biological Sequence Prediction using General Fuzzy Automata","authors":"M. Doostfatemeh, S. C. Kremer","doi":"10.1109/CIBCB.2005.1594947","DOIUrl":null,"url":null,"abstract":"This paper shows how the newly developed paradigm of General Fuzzy Automata (GFA) can be used as a biological sequence predictor. We consider the positional correlations of amino acids in a protein family as the basic criteria for prediction and classification of unknown sequences. It will be shown how the GFA formalism can be used as an efficient tool for classification of protein sequences. The results show that this approach predicts the membership of an unknown sequence in a protein family better than profile Hidden Markov Models (HMMs) which are now a popular and putative approach in biological sequence analysis.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper shows how the newly developed paradigm of General Fuzzy Automata (GFA) can be used as a biological sequence predictor. We consider the positional correlations of amino acids in a protein family as the basic criteria for prediction and classification of unknown sequences. It will be shown how the GFA formalism can be used as an efficient tool for classification of protein sequences. The results show that this approach predicts the membership of an unknown sequence in a protein family better than profile Hidden Markov Models (HMMs) which are now a popular and putative approach in biological sequence analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于通用模糊自动机的生物序列预测
本文介绍了新开发的通用模糊自动机(GFA)范式如何用于生物序列预测。我们将蛋白质家族中氨基酸的位置相关性作为预测和分类未知序列的基本标准。它将显示如何GFA形式可以用作蛋白质序列分类的有效工具。结果表明,该方法比隐马尔可夫模型(hmm)更好地预测未知序列在蛋白质家族中的隶属关系,hmm是目前生物序列分析中常用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Internet-based Melanoma Diagnostic System - Toward the Practical Application - Network Motifs, Feedback Loops and the Dynamics of Genetic Regulatory Networks Multicategory Classification using Extended SVM-RFE and Markov Blanket on SELDI-TOF Mass Spectrometry Data Improving Protein Secondary-Structure Prediction by Predicting Ends of Secondary-Structure Segments Preliminary Results for GAMI: A Genetic Algorithms Approach to Motif Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1