Modeling of growing networks with communities

M. Kimura, Kazumi Saito, N. Ueda
{"title":"Modeling of growing networks with communities","authors":"M. Kimura, Kazumi Saito, N. Ueda","doi":"10.1109/NNSP.2002.1030030","DOIUrl":null,"url":null,"abstract":"We propose a growing network model and its learning algorithm. Unlike the conventional scale-free models, we incorporate community structure, which is an important characteristic of many real-world networks including the Web. In our experiments, we confirmed that the proposed model exhibits a degree distribution with a power-law tail, and our method can precisely estimate the probability of a new link creation from data without community information. Moreover, by introducing a measure of dynamic hub-degrees, we could predict the change of hub-degrees between communities.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose a growing network model and its learning algorithm. Unlike the conventional scale-free models, we incorporate community structure, which is an important characteristic of many real-world networks including the Web. In our experiments, we confirmed that the proposed model exhibits a degree distribution with a power-law tail, and our method can precisely estimate the probability of a new link creation from data without community information. Moreover, by introducing a measure of dynamic hub-degrees, we could predict the change of hub-degrees between communities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社区网络增长的建模
我们提出了一个增长网络模型及其学习算法。与传统的无标度模型不同,我们结合了社区结构,这是包括Web在内的许多现实世界网络的重要特征。在实验中,我们证实了所提出的模型具有幂律尾部的度分布,并且我们的方法可以精确地估计从没有社区信息的数据中创建新链接的概率。此外,通过引入动态枢纽度测度,可以预测群落间枢纽度的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fusion of multiple experts in multimodal biometric personal identity verification systems A new SOLPN-based rate control algorithm for MPEG video coding Analog implementation for networks of integrate-and-fire neurons with adaptive local connectivity Removal of residual crosstalk components in blind source separation using LMS filters Functional connectivity modelling in fMRI based on causal networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1