A Lightweight Hardware-based Authentication for Secure Smart Grid Energy Storage Units

Fathi H. Amsaad, Selçuk Köse
{"title":"A Lightweight Hardware-based Authentication for Secure Smart Grid Energy Storage Units","authors":"Fathi H. Amsaad, Selçuk Köse","doi":"10.1109/WF-IoT51360.2021.9595440","DOIUrl":null,"url":null,"abstract":"Next generation smart power grid offers advanced features to enhance the traditional power grid by enabling faster and more user-friendly two-way communications between utility centers and the consumers for a faster, greener, safer, more reliable, and increasingly efficient power delivery. The energy storage units and smart charging stations have become the essential components of a smart power grid. An efficient authentication and key management scheme is proposed in this work to realize a secure and trusted smart charging coordination system using a low-cost data encryption standard (DES) design and a lightweight physical unclonable function. The proposed scheme is implemented and tested on a re-programmable platform using Artix-7 FPGA device. The experimental results demonstrate that the proposed scheme can be efficiently realized on a off-the-shelf hardware, preserve the privacy of energy storage unit owners, and provide low-cost authentication for different NIST security levels.","PeriodicalId":184138,"journal":{"name":"2021 IEEE 7th World Forum on Internet of Things (WF-IoT)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 7th World Forum on Internet of Things (WF-IoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WF-IoT51360.2021.9595440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Next generation smart power grid offers advanced features to enhance the traditional power grid by enabling faster and more user-friendly two-way communications between utility centers and the consumers for a faster, greener, safer, more reliable, and increasingly efficient power delivery. The energy storage units and smart charging stations have become the essential components of a smart power grid. An efficient authentication and key management scheme is proposed in this work to realize a secure and trusted smart charging coordination system using a low-cost data encryption standard (DES) design and a lightweight physical unclonable function. The proposed scheme is implemented and tested on a re-programmable platform using Artix-7 FPGA device. The experimental results demonstrate that the proposed scheme can be efficiently realized on a off-the-shelf hardware, preserve the privacy of energy storage unit owners, and provide low-cost authentication for different NIST security levels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
安全智能电网储能单元的轻量级硬件认证
下一代智能电网提供了先进的功能,通过在公用事业中心和消费者之间实现更快、更友好的双向通信,从而增强传统电网,实现更快、更环保、更安全、更可靠和更高效的电力输送。储能单元和智能充电站已成为智能电网的重要组成部分。本文提出了一种高效的认证和密钥管理方案,利用低成本的数据加密标准(DES)设计和轻量级的物理不可克隆功能,实现安全可信的智能充电协调系统。利用Artix-7 FPGA器件在可编程平台上对该方案进行了实现和测试。实验结果表明,该方案可以在现成的硬件上有效实现,保护储能单元所有者的隐私,并为不同的NIST安全级别提供低成本的认证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Virtualized LoRa Testbed and Experimental Results for Resource Pooling Towards a Novel Edge to Cloud IoMT Application for Wildlife Monitoring using Edge Computing LoRa-STAR: Optimizing Energy Consumption in LoRa Nodes for Precision Farming Prioritized computation offloading and resource optimization for networks with strict latency DTLS Connection Identifiers for Secure Session Resumption in Constrained IoT Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1