J. Baumgartner, A. G. Flesia, J. Gimenez, J. Pucheta
{"title":"A New Approach to Image Segmentation with Two-Dimensional Hidden Markov Models","authors":"J. Baumgartner, A. G. Flesia, J. Gimenez, J. Pucheta","doi":"10.1109/BRICS-CCI-CBIC.2013.43","DOIUrl":null,"url":null,"abstract":"Image segmentation is one of the fundamental problems in computer vision. In this work, we present a new segmentation algorithm that is based on the theory of two-dimensional hidden Markov models (2D-HMM). Unlike most 2D-HMM approaches we do not apply the Viterbi Algorithm, instead we present a computationally efficient algorithm that propagates the state probabilities through the image. This approach can easily be extended to higher dimensions. We compare the proposed method with a 2D-HMM standard algorithm and Iterated Conditional Modes using real world images like a radiography or a satellite image as well as synthetic images. The experimental results show that our approach is highly capable of condensing image segments. This gives our algorithm a significant advantage over the standard algorithm when dealing with noisy images with few classes.","PeriodicalId":306195,"journal":{"name":"2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRICS-CCI-CBIC.2013.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Image segmentation is one of the fundamental problems in computer vision. In this work, we present a new segmentation algorithm that is based on the theory of two-dimensional hidden Markov models (2D-HMM). Unlike most 2D-HMM approaches we do not apply the Viterbi Algorithm, instead we present a computationally efficient algorithm that propagates the state probabilities through the image. This approach can easily be extended to higher dimensions. We compare the proposed method with a 2D-HMM standard algorithm and Iterated Conditional Modes using real world images like a radiography or a satellite image as well as synthetic images. The experimental results show that our approach is highly capable of condensing image segments. This gives our algorithm a significant advantage over the standard algorithm when dealing with noisy images with few classes.