{"title":"Towards Federated Learning using FaaS Fabric","authors":"Mohak Chadha, Anshul Jindal, M. Gerndt","doi":"10.1145/3429880.3430100","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) enables resource-constrained edge devices to learn a shared Machine Learning (ML) or Deep Neural Network (DNN) model, while keeping the training data local and providing privacy, security, and economic benefits. However, building a shared model for heterogeneous devices such as resource-constrained edge and cloud makes the efficient management of FL-clients challenging. Furthermore, with the rapid growth of FL-clients, the scaling of FL training process is also difficult. In this paper, we propose a possible solution to these challenges: federated learning over a combination of connected Function-as-a-Service platforms, i.e., FaaS fabric offering a seamless way of extending FL to heterogeneous devices. Towards this, we present FedKeeper, a tool for efficiently managing FL over FaaS fabric. We demonstrate the functionality of FedKeeper by using three FaaS platforms through an image classification task with a varying number of devices/clients, different stochastic optimizers, and local computations (local epochs).","PeriodicalId":224350,"journal":{"name":"Proceedings of the 2020 Sixth International Workshop on Serverless Computing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 Sixth International Workshop on Serverless Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3429880.3430100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
Federated learning (FL) enables resource-constrained edge devices to learn a shared Machine Learning (ML) or Deep Neural Network (DNN) model, while keeping the training data local and providing privacy, security, and economic benefits. However, building a shared model for heterogeneous devices such as resource-constrained edge and cloud makes the efficient management of FL-clients challenging. Furthermore, with the rapid growth of FL-clients, the scaling of FL training process is also difficult. In this paper, we propose a possible solution to these challenges: federated learning over a combination of connected Function-as-a-Service platforms, i.e., FaaS fabric offering a seamless way of extending FL to heterogeneous devices. Towards this, we present FedKeeper, a tool for efficiently managing FL over FaaS fabric. We demonstrate the functionality of FedKeeper by using three FaaS platforms through an image classification task with a varying number of devices/clients, different stochastic optimizers, and local computations (local epochs).