Nonparametric Active Learning on Bearing Fault Diagnosis

J. Shi, Pin Wang, Hanxi Li, Long Shuai
{"title":"Nonparametric Active Learning on Bearing Fault Diagnosis","authors":"J. Shi, Pin Wang, Hanxi Li, Long Shuai","doi":"10.1109/ICCC51575.2020.9344999","DOIUrl":null,"url":null,"abstract":"Bearing plays decisive roles in modern industrial and electrical foundations. For authentic situation, immensely streaming and distributed data are congregated by Prognostics and Health Management (PHM) systems. The massive rigid data conduces the following puzzle: comparable huge excesses for PHM system, which is bounded on the whole huge sets. For this task, we employ active learning framework. In this paper, we firstly propose a novel nonparametric active learning (NAL) method and prove that NAL acquisition function is a tightly upper-bound of naive form. We validate our method on TCN (Temporal Convolutional Network) and achieve the state of the art performance on CWRU benchmark, providing mighty data effectiveness enhancement on industrial field.","PeriodicalId":386048,"journal":{"name":"2020 IEEE 6th International Conference on Computer and Communications (ICCC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 6th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC51575.2020.9344999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Bearing plays decisive roles in modern industrial and electrical foundations. For authentic situation, immensely streaming and distributed data are congregated by Prognostics and Health Management (PHM) systems. The massive rigid data conduces the following puzzle: comparable huge excesses for PHM system, which is bounded on the whole huge sets. For this task, we employ active learning framework. In this paper, we firstly propose a novel nonparametric active learning (NAL) method and prove that NAL acquisition function is a tightly upper-bound of naive form. We validate our method on TCN (Temporal Convolutional Network) and achieve the state of the art performance on CWRU benchmark, providing mighty data effectiveness enhancement on industrial field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轴承故障诊断中的非参数主动学习
轴承在现代工业和电气基础中起着举足轻重的作用。对于真实情况,预测和健康管理(PHM)系统聚集了大量的流和分布式数据。大量的刚性数据导致了以下难题:PHM系统的可比较的巨大超量,它是在整个大集合上有界的。对于这个任务,我们采用主动学习框架。本文首先提出了一种新的非参数主动学习(NAL)方法,并证明了NAL获取函数是朴素形式的紧上界。我们在TCN (Temporal Convolutional Network)上验证了我们的方法,并在CWRU基准上取得了最先进的性能,为工业领域的数据有效性提供了强有力的提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Safe and Stable Timing Method over Air Interface Based on Multi-Base Station Cooperation Peak to Average Power Ratio (PAPR) Mitigation for Underwater Acoustic OFDM System by Using an Efficient Hybridization Technique Monocular Visual-Inertial Odometry Based on Point and Line Features Block Halftoning for Size-Invariant Visual Cryptography Based on Two-Dimensional Lattices Airborne STAP with Unknown Mutual Coupling for Coprime Sampling Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1