Mainlobe Interference Suppression Method Based on Blocking Matrix Preprocessing with Low Sidelobe Constraint

Meng Haoyu, Qu Xiaodong, Zhang Xingyu, L. Wolin, Zhang Zhengyan, Yang Xiaopeng
{"title":"Mainlobe Interference Suppression Method Based on Blocking Matrix Preprocessing with Low Sidelobe Constraint","authors":"Meng Haoyu, Qu Xiaodong, Zhang Xingyu, L. Wolin, Zhang Zhengyan, Yang Xiaopeng","doi":"10.23919/APSIPAASC55919.2022.9980066","DOIUrl":null,"url":null,"abstract":"Adaptive beamforming is widely used in phased array radar for interference and noise suppression. However, when mainlobe interference exists, mainlobe distortion, peak offset and sidelobe level rise will occur, which seriously deteriorate the performance of adaptive beamforming. To address this issue, this paper proposes a mainlobe interference suppression method based on blocking matrix preprocessing (BMP) with low sidelobe constraint. In the method, singular value decomposition (SVD) method is firstly utilized to estimate the angle of the mainlobe interference and blocking matrix is constituted to suppress the mainlobe interference. Then, under the restriction of low sidelobe level, a convex optimization problem is solved to further suppress the sidelobe interferences. Numerical simulations are conducted, and the results show the effectiveness and robustness of the method.","PeriodicalId":382967,"journal":{"name":"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/APSIPAASC55919.2022.9980066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Adaptive beamforming is widely used in phased array radar for interference and noise suppression. However, when mainlobe interference exists, mainlobe distortion, peak offset and sidelobe level rise will occur, which seriously deteriorate the performance of adaptive beamforming. To address this issue, this paper proposes a mainlobe interference suppression method based on blocking matrix preprocessing (BMP) with low sidelobe constraint. In the method, singular value decomposition (SVD) method is firstly utilized to estimate the angle of the mainlobe interference and blocking matrix is constituted to suppress the mainlobe interference. Then, under the restriction of low sidelobe level, a convex optimization problem is solved to further suppress the sidelobe interferences. Numerical simulations are conducted, and the results show the effectiveness and robustness of the method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于低旁瓣约束的块矩阵预处理的主瓣干扰抑制方法
自适应波束形成在相控阵雷达中广泛应用于干扰和噪声抑制。但是,当存在主瓣干扰时,会产生主瓣失真、峰值偏移和副瓣电平上升,严重影响自适应波束形成的性能。针对这一问题,本文提出了一种基于低旁瓣约束的块矩阵预处理(BMP)的主瓣干扰抑制方法。该方法首先利用奇异值分解(SVD)方法估计主叶干扰角度,并构造阻塞矩阵抑制主叶干扰。然后,在低副瓣电平限制下,解决凸优化问题,进一步抑制副瓣干扰。数值仿真结果表明了该方法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Observation of Nitrogen-Bearing Organic Molecules from Reactions of Nitrogen Atoms with Hydrocarbons:  A Crossed Beam Study of N(2D) + Ethylene
IF 2.9 2区 化学The Journal of Physical Chemistry APub Date : 2000-06-15 DOI: 10.1021/jp001057a
Nadia Balucani, Laura Cartechini, Michele Alagia, Piergiorgio Casavecchia, Gian Gualberto Volpi
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-class Vehicle Counting System for Multi-view Traffic Videos Optimal Deep Multi-Route Self-Attention for Single Image Super-Resolution Distance Estimation Between Camera and Vehicles from an Image using YOLO and Machine Learning ASGAN-VC: One-Shot Voice Conversion with Additional Style Embedding and Generative Adversarial Networks PVGCRA: Prediction Variance Guided Cross Region Domain Adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1