ANN-based hybrid state estimation and enhanced visualization of power systems

Amit Kumar, S. Chakrabarti
{"title":"ANN-based hybrid state estimation and enhanced visualization of power systems","authors":"Amit Kumar, S. Chakrabarti","doi":"10.1109/ISET-INDIA.2011.6145359","DOIUrl":null,"url":null,"abstract":"The paper presents an artificial neural network (ANN)-based hybrid state estimator for estimating the states of a power system in the presence of conventional asynchronous as well as synchronous phasor measurements. Case studies on test systems show promising results for the ANN-based estimator. The paper also presents methodologies to enhance the visualization of the power system during the intervals between successive outputs of the conventional state estimator. The ANN-based state estimators trained with measurements from phasor measurement units (PMUs) are shown to be useful for enhancing the visualization of the power system during such intervals.","PeriodicalId":265646,"journal":{"name":"ISGT2011-India","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISGT2011-India","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISET-INDIA.2011.6145359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The paper presents an artificial neural network (ANN)-based hybrid state estimator for estimating the states of a power system in the presence of conventional asynchronous as well as synchronous phasor measurements. Case studies on test systems show promising results for the ANN-based estimator. The paper also presents methodologies to enhance the visualization of the power system during the intervals between successive outputs of the conventional state estimator. The ANN-based state estimators trained with measurements from phasor measurement units (PMUs) are shown to be useful for enhancing the visualization of the power system during such intervals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的电力系统混合状态估计与增强可视化
提出了一种基于人工神经网络(ANN)的混合状态估计器,用于估计传统异步和同步相量测量下的电力系统状态。测试系统的案例研究表明,基于人工神经网络的估计器具有良好的效果。本文还提出了在常规状态估计器连续输出间隔期间增强电力系统可视化的方法。用相量测量单元(pmu)的测量值训练的基于人工神经网络的状态估计器对于增强在此时间段内电力系统的可视化是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improvement of demand response using mixed pumped storage hydro plant A new expression for power factor under nonsinusoidal conditions A reformed capacity subscription market in restructured power systems Smart grid implementation across the globe: A survey Enhancement of voltage stability index of distribution system by network reconfiguration including static load model and daily load curve
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1