Integrated Machine Learning Model for Prediction of Lung Cancer Stages from Textual data using Ensemble Method

D. Reddy, Emmidi Naga Hemanth Kumar, D. Reddy, Monika P
{"title":"Integrated Machine Learning Model for Prediction of Lung Cancer Stages from Textual data using Ensemble Method","authors":"D. Reddy, Emmidi Naga Hemanth Kumar, D. Reddy, Monika P","doi":"10.1109/ICAIT47043.2019.8987295","DOIUrl":null,"url":null,"abstract":"Research and Development on cancer detection is more on imaging than textual data. With the help of documented symptoms in the form of text and Machine Learning (ML) techniques, it is possible to predict the lung cancerstages effectively. This paper conjectures the oeuvre modelwhich is efficient in predicting the stages of lung carcinoma by applying the concepts of ML algorithms. The proposed model is combination of K-Nearest Neighbours, Decision Tree and Neural Networks modelsalong with bagging ensemble method for enhancing the accuracy of the overall prediction. The predictedresults of the suggested model are showing better accuracy compared to individual algorithms.","PeriodicalId":221994,"journal":{"name":"2019 1st International Conference on Advances in Information Technology (ICAIT)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 1st International Conference on Advances in Information Technology (ICAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIT47043.2019.8987295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Research and Development on cancer detection is more on imaging than textual data. With the help of documented symptoms in the form of text and Machine Learning (ML) techniques, it is possible to predict the lung cancerstages effectively. This paper conjectures the oeuvre modelwhich is efficient in predicting the stages of lung carcinoma by applying the concepts of ML algorithms. The proposed model is combination of K-Nearest Neighbours, Decision Tree and Neural Networks modelsalong with bagging ensemble method for enhancing the accuracy of the overall prediction. The predictedresults of the suggested model are showing better accuracy compared to individual algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于集成方法的基于文本数据预测肺癌分期的集成机器学习模型
癌症检测的研究和发展更多的是基于图像而不是文本数据。借助以文本形式记录的症状和机器学习(ML)技术,可以有效地预测肺癌的分期。本文运用机器学习算法的概念,推测了一个能有效预测肺癌分期的oeuvre模型。该模型结合了k近邻、决策树和神经网络模型以及套袋集成方法,以提高整体预测的准确性。与单个算法相比,该模型的预测结果显示出更高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure Transfer of Image-Acquired Text Using a Combination of Cryptography and Steganography Query Specific Semantic Matcher and Summarization Analysis of Human Intelligence in Identifying Persons Native through the Features of Facial Image Online Product Review Classification Intelligent Energy Meter for Smartcity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1