Distilling command and control network intrusions from network flow metadata using temporal PageRank

Latchman Singh, A. Cheng
{"title":"Distilling command and control network intrusions from network flow metadata using temporal PageRank","authors":"Latchman Singh, A. Cheng","doi":"10.1109/ATNAC.2016.7878792","DOIUrl":null,"url":null,"abstract":"Malicious network intrusions which exfiltrate data from computer networks are extremely damaging for organisations and governments worldwide. Combating these network intrusions and large-scale cyber-attacks requires mining and analysis of large volumes of computer network data. We present a statistical filtering and temporal PageRank technique that improves the probability of discovering network intrusions. The technique filters out benign network data such that the data remaining is more pertinent and likely to contain malicious command and control (C2) traffic. We then propose a novel application of Google's PageRank algorithm by incorporating temporal analysis and evaluating a time-series of page rankings for identifying C2 like traffic. Two case studies using data collected at the gateway of an enterprise network and at the Internet backbone are presented to support our technique.","PeriodicalId":317649,"journal":{"name":"2016 26th International Telecommunication Networks and Applications Conference (ITNAC)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 26th International Telecommunication Networks and Applications Conference (ITNAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATNAC.2016.7878792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Malicious network intrusions which exfiltrate data from computer networks are extremely damaging for organisations and governments worldwide. Combating these network intrusions and large-scale cyber-attacks requires mining and analysis of large volumes of computer network data. We present a statistical filtering and temporal PageRank technique that improves the probability of discovering network intrusions. The technique filters out benign network data such that the data remaining is more pertinent and likely to contain malicious command and control (C2) traffic. We then propose a novel application of Google's PageRank algorithm by incorporating temporal analysis and evaluating a time-series of page rankings for identifying C2 like traffic. Two case studies using data collected at the gateway of an enterprise network and at the Internet backbone are presented to support our technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用时态PageRank从网络流元数据中提取命令和控制网络入侵
从计算机网络中窃取数据的恶意网络入侵对世界各地的组织和政府造成了极大的破坏。打击这些网络入侵和大规模网络攻击需要挖掘和分析大量的计算机网络数据。我们提出了一种统计过滤和时间PageRank技术,提高了发现网络入侵的概率。该技术过滤掉良性的网络数据,使剩余的数据更相关,并且可能包含恶意的命令和控制(C2)流量。然后,我们提出了谷歌的PageRank算法的一种新应用,通过结合时间分析和评估时间序列的页面排名来识别C2类流量。本文给出了两个案例研究,使用在企业网络网关和Internet骨干网收集的数据来支持我们的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Software Defined Networking properties in multi-domain networks A cosine similarity-based compensation strategy for RSS detection variance in indoor localization Implementation of PCC OFDM on a software defined radio platform IPv6 campus network deployment guidelines for DNS, Web server, Proxy server and Wi-Fi Fractal renewal process based analysis of emerging network traffic in access networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1