{"title":"Qualifying Relative Timing Constraints for Asynchronous Circuits","authors":"Jotham Vaddaboina Manoranjan, K. Stevens","doi":"10.1109/ASYNC.2016.23","DOIUrl":null,"url":null,"abstract":"Relative Timing uses path based timing constraints to guarantee that a circuit conforms to its behavioral specification. Timing constraints are used to order signal transitions or events in a circuit through corresponding minimum and maximum delay timing constraints. A circuit may have multiple sets of constraints, each of which, when satisfied, can individually ensure functional correctness. This paper presents a framework to evaluate and rank relative timing constraint sets for a given circuit. The constraint sets are evaluated on the basis of robustness of the constraints and conflicts between constraints in the same set. The analysis is automated by building a tool. The paper applies the methodology and tool to optimize the extraction of relative timing constraints for delay insensitive timing models of asynchronous circuits. This is demonstrated using a burst-mode controller. The optimization leads to an average tool runtime reduction of 94%.","PeriodicalId":314538,"journal":{"name":"2016 22nd IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 22nd IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASYNC.2016.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Relative Timing uses path based timing constraints to guarantee that a circuit conforms to its behavioral specification. Timing constraints are used to order signal transitions or events in a circuit through corresponding minimum and maximum delay timing constraints. A circuit may have multiple sets of constraints, each of which, when satisfied, can individually ensure functional correctness. This paper presents a framework to evaluate and rank relative timing constraint sets for a given circuit. The constraint sets are evaluated on the basis of robustness of the constraints and conflicts between constraints in the same set. The analysis is automated by building a tool. The paper applies the methodology and tool to optimize the extraction of relative timing constraints for delay insensitive timing models of asynchronous circuits. This is demonstrated using a burst-mode controller. The optimization leads to an average tool runtime reduction of 94%.