M. Nizam, H. Maghfiroh, R. A. Rosadi, Kirana D. U. Kusumaputri
{"title":"Design of Battery Management System (BMS) for Lithium Iron Phosphate (LFP) Battery","authors":"M. Nizam, H. Maghfiroh, R. A. Rosadi, Kirana D. U. Kusumaputri","doi":"10.1109/ICEVT48285.2019.8994002","DOIUrl":null,"url":null,"abstract":"Lithium iron phosphate battery (LFP) is one of the longest lifetime lithium ion batteries. However, its application in the long-term needs requires specific conditions to be operated normally and avoid damage. Battery management system (BMS) is the solution to this problem. The BMS designed in this study has three key features: monitoring, balancing, and protection. Arduino Nano as a microcontroller gives an advantage that is programable so that it can be used for all types of LFP batteries, without the need to re-create BMS. The results of this study indicate the ability of BMS in maintaining voltage values with passive balancing at 3.6V, disconnecting the input current and voltage under over and under conditions with protection, and displaying system monitoring conditions on the screen.","PeriodicalId":125935,"journal":{"name":"2019 6th International Conference on Electric Vehicular Technology (ICEVT)","volume":"217 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th International Conference on Electric Vehicular Technology (ICEVT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEVT48285.2019.8994002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Lithium iron phosphate battery (LFP) is one of the longest lifetime lithium ion batteries. However, its application in the long-term needs requires specific conditions to be operated normally and avoid damage. Battery management system (BMS) is the solution to this problem. The BMS designed in this study has three key features: monitoring, balancing, and protection. Arduino Nano as a microcontroller gives an advantage that is programable so that it can be used for all types of LFP batteries, without the need to re-create BMS. The results of this study indicate the ability of BMS in maintaining voltage values with passive balancing at 3.6V, disconnecting the input current and voltage under over and under conditions with protection, and displaying system monitoring conditions on the screen.